The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SLC2A1  -  solute carrier family 2 (facilitated...

Homo sapiens

Synonyms: DYT17, DYT18, DYT9, EIG12, GLUT, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SLC2A1


Psychiatry related information on SLC2A1


High impact information on SLC2A1


Chemical compound and disease context of SLC2A1


Biological context of SLC2A1


Anatomical context of SLC2A1

  • CONCLUSIONS: MMP-2 expression and cell invasiveness are tightly associated with Glut-1 expression in human cancer cell lines [4].
  • Further analyses indicated that these GLUT1+ thymocytes are early post-beta-selection, as demonstrated by low levels of T cell receptor (TCR)alphabeta and CD3 [16].
  • Glut-1 immunoreactivity in erythrocyte membranes was normal [14].
  • RESULTS: There were positive correlations between (18)FDG uptake and Glut-1 expression (P <.001), MAI (P =.001), amount of necrosis (P =.010), number of tumor cells/volume (P =.009), expression of HK I (P =.019), number of lymphocytes (P =.032), and microvessel density (r =.373; P =.005) [17].
  • GLUT1 stimulation by (S422D)SGK1 is not due to de novo protein synthesis but rather to an increase of the transporter's abundance in the plasma membrane [18].

Associations of SLC2A1 with chemical compounds


Physical interactions of SLC2A1


Regulatory relationships of SLC2A1


Other interactions of SLC2A1


Analytical, diagnostic and therapeutic context of SLC2A1




  1. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Manel, N., Kim, F.J., Kinet, S., Taylor, N., Sitbon, M., Battini, J.L. Cell (2003) [Pubmed]
  2. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Seidner, G., Alvarez, M.G., Yeh, J.I., O'Driscoll, K.R., Klepper, J., Stump, T.S., Wang, D., Spinner, N.B., Birnbaum, M.J., De Vivo, D.C. Nat. Genet. (1998) [Pubmed]
  3. Sequence and structure of a human glucose transporter. Mueckler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I., Morris, H.R., Allard, W.J., Lienhard, G.E., Lodish, H.F. Science (1985) [Pubmed]
  4. Coexpression of glucose transporter 1 and matrix metalloproteinase-2 in human cancers. Ito, S., Fukusato, T., Nemoto, T., Sekihara, H., Seyama, Y., Kubota, S. J. Natl. Cancer Inst. (2002) [Pubmed]
  5. Autosomal dominant transmission of GLUT1 deficiency. Klepper, J., Willemsen, M., Verrips, A., Guertsen, E., Herrmann, R., Kutzick, C., Flörcken, A., Voit, T. Hum. Mol. Genet. (2001) [Pubmed]
  6. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer's disease. Simpson, I.A., Chundu, K.R., Davies-Hill, T., Honer, W.G., Davies, P. Ann. Neurol. (1994) [Pubmed]
  7. Molecular cloning and characterization of an insulin-regulatable glucose transporter. James, D.E., Strube, M., Mueckler, M. Nature (1989) [Pubmed]
  8. Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-zeta. Dada, L.A., Chandel, N.S., Ridge, K.M., Pedemonte, C., Bertorello, A.M., Sznajder, J.I. J. Clin. Invest. (2003) [Pubmed]
  9. Effects of hyperglycemia on glucose transporters of the muscle: use of the renal glucose reabsorption inhibitor phlorizin to control glycemia. Dimitrakoudis, D., Vranic, M., Klip, A. J. Am. Soc. Nephrol. (1992) [Pubmed]
  10. GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Airley, R.E., Loncaster, J., Raleigh, J.A., Harris, A.L., Davidson, S.E., Hunter, R.D., West, C.M., Stratford, I.J. Int. J. Cancer (2003) [Pubmed]
  11. Differential metabolic adaptation to acute and long-term hypoxia in rat primary cortical astrocytes. Véga, C., R Sachleben, L., Gozal, D., Gozal, E. J. Neurochem. (2006) [Pubmed]
  12. Stunning and its effect on 3H-FDG uptake and key gene expression in breast cancer cells undergoing chemotherapy. Engles, J.M., Quarless, S.A., Mambo, E., Ishimori, T., Cho, S.Y., Wahl, R.L. J. Nucl. Med. (2006) [Pubmed]
  13. Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Maranchie, J.K., Zhan, Y. Cancer Res. (2005) [Pubmed]
  14. Autosomal dominant glut-1 deficiency syndrome and familial epilepsy. Brockmann, K., Wang, D., Korenke, C.G., von Moers, A., Ho, Y.Y., Pascual, J.M., Kuang, K., Yang, H., Ma, L., Kranz-Eble, P., Fischbarg, J., Hanefeld, F., De Vivo, D.C. Ann. Neurol. (2001) [Pubmed]
  15. Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Burke, B., Giannoudis, A., Corke, K.P., Gill, D., Wells, M., Ziegler-Heitbrock, L., Lewis, C.E. Am. J. Pathol. (2003) [Pubmed]
  16. Glucose transporter 1 expression identifies a population of cycling CD4+ CD8+ human thymocytes with high CXCR4-induced chemotaxis. Swainson, L., Kinet, S., Manel, N., Battini, J.L., Sitbon, M., Taylor, N. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  17. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. Bos, R., van Der Hoeven, J.J., van Der Wall, E., van Der Groep, P., van Diest, P.J., Comans, E.F., Joshi, U., Semenza, G.L., Hoekstra, O.S., Lammertsma, A.A., Molthoff, C.F. J. Clin. Oncol. (2002) [Pubmed]
  18. SGK1 kinase upregulates GLUT1 activity and plasma membrane expression. Palmada, M., Boehmer, C., Akel, A., Rajamanickam, J., Jeyaraj, S., Keller, K., Lang, F. Diabetes (2006) [Pubmed]
  19. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. Rumsey, S.C., Kwon, O., Xu, G.W., Burant, C.F., Simpson, I., Levine, M. J. Biol. Chem. (1997) [Pubmed]
  20. Analysis of transmembrane segment 8 of the GLUT1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility. Mueckler, M., Makepeace, C. J. Biol. Chem. (2004) [Pubmed]
  21. The glut 1 glucose transporter interacts with calnexin and calreticulin. Oliver, J.D., Hresko, R.C., Mueckler, M., High, S. J. Biol. Chem. (1996) [Pubmed]
  22. Membrane-bound glyceraldehyde-3-phosphate dehydrogenase and multiphasic erythrocyte sugar transport. Heard, K.S., Diguette, M., Heard, A.C., Carruthers, A. Exp. Physiol. (1998) [Pubmed]
  23. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Giorgino, F., de Robertis, O., Laviola, L., Montrone, C., Perrini, S., McCowen, K.C., Smith, R.J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  24. Estrogen and progesterone up-regulate glucose transporter expression in ZR-75-1 human breast cancer cells. Medina, R.A., Meneses, A.M., Vera, J.C., Guzman, C., Nualart, F., Astuya, A., García, M.A., Kato, S., Carvajal, A., Pinto, M., Owen, G.I. Endocrinology (2003) [Pubmed]
  25. Induction of human T cell leukemia virus type I receptors on quiescent naive T lymphocytes by TGF-beta. Jones, K.S., Akel, S., Petrow-Sadowski, C., Huang, Y., Bertolette, D.C., Ruscetti, F.W. J. Immunol. (2005) [Pubmed]
  26. Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Fu, Y., Maianu, L., Melbert, B.R., Garvey, W.T. Blood Cells Mol. Dis. (2004) [Pubmed]
  27. Clinicopathological Significance and Linkage of the Distribution of HIF-1alpha and GLUT-1 in Human Primary Colorectal Cancer. Wincewicz, A., Sulkowska, M., Koda, M., Sulkowski, S. Pathol. Oncol. Res. (2007) [Pubmed]
  28. Myocardial glucose transporter GLUT1: translocation induced by insulin and ischemia. Egert, S., Nguyen, N., Schwaiger, M. J. Mol. Cell. Cardiol. (1999) [Pubmed]
  29. Nephrin is critical for the action of insulin on human glomerular podocytes. Coward, R.J., Welsh, G.I., Koziell, A., Hussain, S., Lennon, R., Ni, L., Tavaré, J.M., Mathieson, P.W., Saleem, M.A. Diabetes (2007) [Pubmed]
  30. Dehydroascorbate transport in human chondrocytes is regulated by hypoxia and is a physiologically relevant source of ascorbic acid in the joint. McNulty, A.L., Stabler, T.V., Vail, T.P., McDaniel, G.E., Kraus, V.B. Arthritis Rheum. (2005) [Pubmed]
  31. The von Hippel-Lindau protein interacts with heteronuclear ribonucleoprotein a2 and regulates its expression. Pioli, P.A., Rigby, W.F. J. Biol. Chem. (2001) [Pubmed]
  32. Relative proximity and orientation of helices 4 and 8 of the GLUT1 glucose transporter. Alisio, A., Mueckler, M. J. Biol. Chem. (2004) [Pubmed]
  33. Minor effect of GLUT1 polymorphisms on susceptibility to diabetic nephropathy in type 1 diabetes. Ng, D.P., Canani, L., Araki, S., Smiles, A., Moczulski, D., Warram, J.H., Krolewski, A.S. Diabetes (2002) [Pubmed]
  34. Cellular basis of diabetic nephropathy: III. In vitro GLUT1 mRNA expression and risk of diabetic nephropathy in type 1 diabetic patients. Huang, C., Kim, Y., Caramori, M.L., Fish, A.J., Rich, S.S., Miller, M.E., Russell, G.B., Mauer, M. Diabetologia (2004) [Pubmed]
WikiGenes - Universities