The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts.

8-oxo-deoxyguanosine (8-oxodG) is one of the major DNA lesions formed upon oxidative attack of DNA. It is a mutagenic adduct that has been associated with pathological states such as cancer and aging. Base excision repair (BER) is the main pathway for the repair of 8-oxodG. There is a great deal of interest in the question about age-associated accumulation of this DNA lesion and its intracellular distribution, particularly with respect to mitochondrial or nuclear localization. We have previously shown that 8-oxodG-incision activity increases with age in rat mitochondria obtained from both liver and heart. In this study, we have investigated the age-associated changes in DNA repair activities in both mitochondrial and nuclear extracts obtained from mouse liver. We observed that 8-oxodG incision activity of mitochondrial extracts increases significantly with age, from 13.4 + or - 2.2 fmoles of oligomer/100 microg of protein/16 h at 6 to 18.6 + or - 4.9 at 14 and 23.7 + or - 3.8 at 23 months of age. In contrast, the nuclear 8-oxodG incision activity showed no significant change with age, and in fact slightly decreased from 11.8 + or - 3 fmoles/50 microg of protein/2 h at 6 months to 9.7 + or - 0.8 at 14 months. Uracil DNA glycosylase and endonuclease G activities did not change with age in nucleus or mitochondria. Our results show that the repair of 8-oxodG is regulated differently in nucleus and mitochondria during the aging process. The specific increase in 8-oxodG-incision activity in mitochondria, rather than a general up-regulation of DNA metabolizing enzymes in those organelles, suggests that this pathway may be up regulated during aging in mice.[1]


WikiGenes - Universities