The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation.

Manganese-superoxide dismutase (Sod2) removes mitochondrially derived superoxide (O(2)) at near-diffusion limiting rates and is the only antioxidant enzyme whose expression is regulated by numerous stimuli. Here it is shown that Sod2 also serves as a source of the intracellular signaling molecule H(2)O(2). Sod2-dependent increases in the steady-state levels of H(2)O(2) led to ERK1/2 activation and subsequent downstream transcriptional increases in matrix metalloproteinase-1 (MMP-1) expression, which were reversed by expression of the H(2)O(2)-detoxifying enzyme, catalase. In addition, a single nucleotide polymorphism has recently been identified (1G/2G) at base pair--1607 that creates an Ets site adjacent to an AP-1 site at base pair --1602 and has been shown to dramatically enhance transcription of the MMP-1 promoter. Luciferase promoter constructs containing either the 1G or 2G variation were 25- or 1000-fold more active when transiently transfected into Sod2-overexpressing cell lines, respectively. The levels of MMP-2, -3, and -7 were also increased in the Sod2-overexpressing cell lines, suggesting that Sod2 may function as a "global" redox regulator of MMP expression. In addition, Sod2(-/+) mouse embryonic fibroblasts failed to respond to the cytokine- mediated induction of the murine functional analog of MMP-1, MMP-13. This study provides evidence that the modulation of Sod2 activity by a wide array of pathogenic and inflammatory stimuli may be utilized by the cell as a primary signaling mechanism leading to matrix metalloproteinase expression.[1]

References

  1. Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation. Ranganathan, A.C., Nelson, K.K., Rodriguez, A.M., Kim, K.H., Tower, G.B., Rutter, J.L., Brinckerhoff, C.E., Huang, T.T., Epstein, C.J., Jeffrey, J.J., Melendez, J.A. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities