The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Cat  -  catalase

Mus musculus

Synonyms: 2210418N07, Cas-1, Cas1, Catalase, Cs-1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cat


Psychiatry related information on Cat


High impact information on Cat

  • This augmented peroxisome population was accompanied by significant elevation of liver catalase activity [11].
  • In addition, administration of scavengers of reactive oxygen metabolites, such as catalase and desferrioxamine, did not prevent the albuminuria in this model [12].
  • Aminotriazole inhibition of lymphokine-activated cells' catalase or of toxoplasma catalase was effective in inducing these macrophages to display antitoxoplasma activity [13].
  • Inhibition of IB and IM macrophage catalase by aminotriazole maintained toxoplasmastatic activity otherwise lost after 48 h of cultivation [13].
  • The activities of the endogenous O2- and H2O2 scavenging enzymes, superoxide dismutase (SOD), glutathionine peroxidase (GP), and catalase, were measured in lysates of the intracellular parasite, Toxoplasma gondii, and in various macrophage populations [13].

Chemical compound and disease context of Cat


Biological context of Cat

  • Thus an altered Sod1/(Gpx1 plus Cat) ratio may also affect gene expression by altering the binding and/or availability of transcription factors to DNA [19].
  • We propose that it is the balance in the activity of the Sod to Gpx plus Cat ratio (Sod/(Gpx plus Cat)) that is an important determinant of cellular aging [19].
  • Significant differences in copper zinc superoxide dismutase and catalase activities were not noted and the levels of total, reduced and oxidized glutathione were similar in transgene (+) and (-) animals [20].
  • The level of catalase activity remained low in the remnant kidneys of acatalasemic mice until week 18 without compensatory up-regulation of glutathione peroxidase or superoxide dismutase (SOD) activity [2].
  • In contrast, inactivation of catalase caused substantial cell death only in GPx1(-/-) cells but not in wild-type astrocytes [21].

Anatomical context of Cat


Associations of Cat with chemical compounds

  • The mouse catalase (Cat or Cas1) gene was disrupted by replacing parts of intron 4 and exon 5 with a neomycin resistance cassette [22].
  • Notably, SNs from both Cat KO and old mice were deficient in removing extracellular challenges of H(2)O(2) [27].
  • An imbalance in the ratio of Sod to Gpx and Cat results in the accumulation of H2O2 which may participate in the Fenton reaction, resulting in the formation of noxious hydroxyl radicals [19].
  • However, mice deficient in catalase were not more vulnerable to hyperoxia-induced lung injury; nor did their lenses show any increased susceptibility to oxidative stress generated by photochemical reaction, suggesting that the antioxidant function of catalase in these two models of oxidant injury is negligible [22].
  • Coexpression of MnSOD and catalase provided synergistic protection against peroxynitrite and STZ [1].

Physical interactions of Cat

  • Further evidence for the involvement of ROS in NF-kappaB activation is that 1 mM H2O2 enhanced NF-kappaB/DNA binding and that this activation was inhibited by catalase [28].

Regulatory relationships of Cat


Other interactions of Cat


Analytical, diagnostic and therapeutic context of Cat


  1. MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity. Chen, H., Li, X., Epstein, P.N. Diabetes (2005) [Pubmed]
  2. Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kobayashi, M., Sugiyama, H., Wang, D.H., Toda, N., Maeshima, Y., Yamasaki, Y., Masuoka, N., Yamada, M., Kira, S., Makino, H. Kidney Int. (2005) [Pubmed]
  3. Isolation of a cDNA clone for murine catalase and analysis of an acatalasemic mutant. Shaffer, J.B., Sutton, R.B., Bewley, G.C. J. Biol. Chem. (1987) [Pubmed]
  4. Elevated sod2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Nelson, K.K., Ranganathan, A.C., Mansouri, J., Rodriguez, A.M., Providence, K.M., Rutter, J.L., Pumiglia, K., Bennett, J.A., Melendez, J.A. Clin. Cancer Res. (2003) [Pubmed]
  5. Acatalasemia sensitizes renal tubular epithelial cells to apoptosis and exacerbates renal fibrosis after unilateral ureteral obstruction. Sunami, R., Sugiyama, H., Wang, D.H., Kobayashi, M., Maeshima, Y., Yamasaki, Y., Masuoka, N., Ogawa, N., Kira, S., Makino, H. Am. J. Physiol. Renal Physiol. (2004) [Pubmed]
  6. Attenuation of catalase activity in the malignant phenotype plays a functional role in an in vitro model for tumor progression. Gupta, A., Butts, B., Kwei, K.A., Dvorakova, K., Stratton, S.P., Briehl, M.M., Bowden, G.T. Cancer Lett. (2001) [Pubmed]
  7. Cardiac peroxisomal enzymes and starvation. Crescimanno, M., Armata, M.G., Rausa, L., Gueli, M.C., Nicotra, C., D'Alessandro, N. Free Radic. Res. Commun. (1989) [Pubmed]
  8. Cytoskeletal and morphologic impact of cellular oxidant injury. Hinshaw, D.B., Sklar, L.A., Bohl, B., Schraufstatter, I.U., Hyslop, P.A., Rossi, M.W., Spragg, R.G., Cochrane, C.G. Am. J. Pathol. (1986) [Pubmed]
  9. Genetic differences in alcohol drinking preference between inbred strains of mice. He, X.X., Nebert, D.W., Vasiliou, V., Zhu, H., Shertzer, H.G. Pharmacogenetics (1997) [Pubmed]
  10. Cyanamide reduces brain catalase and ethanol-induced locomotor activity: is there a functional link? Sanchis-Segura, C., Miquel, M., Correa, M., Aragon, C.M. Psychopharmacology (Berl.) (1999) [Pubmed]
  11. Hepatic peroxisome proliferation: induction by two novel compounds structurally unrelated to clofibrate. Reddy, J.K., Krishnakantha, T.P. Science (1975) [Pubmed]
  12. Antiglomerular basement membrane nephritis in beige mice. Deficiency of leukocytic neutral proteinases prevents the induction of albuminuria in the heterologous phase. Schrijver, G., Schalkwijk, J., Robben, J.C., Assmann, K.J., Koene, R.A. J. Exp. Med. (1989) [Pubmed]
  13. Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers of oxygen intermediates. Murray, H.W., Nathan, C.F., Cohn, Z.A. J. Exp. Med. (1980) [Pubmed]
  14. Cocaine alters catalase activity in prefrontal cortex and striatum of mice. Macêdo, D.S., de Vasconcelos, S.M., dos Santos, R.S., Aguiar, L.M., Lima, V.T., Viana, G.S., de Sousa, F.C. Neurosci. Lett. (2005) [Pubmed]
  15. Comparison of the effects of melatonin and pentoxifylline on carbon tetrachloride-induced liver toxicity in mice. Noyan, T., K??m??ro??lu, U., Bayram, I., Sekero??lu, M.R. Cell Biol. Toxicol. (2006) [Pubmed]
  16. Changes in glutathione-related enzymes in tumor-bearing mice after cisplatin treatment. Khynriam, D., Prasad, S.B. Cell Biol. Toxicol. (2002) [Pubmed]
  17. Catalase enrichment using recombinant adenovirus protects alphaTN4-1 cells from H(2)O(2). Ma, W., Nunes, I., Young, C.S., Spector, A. Free Radic. Biol. Med. (2006) [Pubmed]
  18. Hepatic peroxisome proliferation in vitamin A-deficient mice without a simultaneous increase in peroxisomal acyl-CoA oxidase activity. Sohlenius, A.K., Reinfeldt, M., Bäckström, K., Bergstrand, A., DePierre, J.W. Biochem. Pharmacol. (1996) [Pubmed]
  19. Cu/Zn-superoxide dismutase and glutathione peroxidase during aging. de Haan, J.B., Cristiano, F., Iannello, R.C., Kola, I. Biochem. Mol. Biol. Int. (1995) [Pubmed]
  20. Targeted lung expression of interleukin-11 enhances murine tolerance of 100% oxygen and diminishes hyperoxia-induced DNA fragmentation. Waxman, A.B., Einarsson, O., Seres, T., Knickelbein, R.G., Warshaw, J.B., Johnston, R., Homer, R.J., Elias, J.A. J. Clin. Invest. (1998) [Pubmed]
  21. Glutathione peroxidase 1 and glutathione are required to protect mouse astrocytes from iron-mediated hydrogen peroxide toxicity. Liddell, J.R., Hoepken, H.H., Crack, P.J., Robinson, S.R., Dringen, R. J. Neurosci. Res. (2006) [Pubmed]
  22. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. Ho, Y.S., Xiong, Y., Ma, W., Spector, A., Ho, D.S. J. Biol. Chem. (2004) [Pubmed]
  23. In vitro steady-state levels of hydrogen peroxide after exposure of male F344 rats and female B6C3F1 mice to hepatic peroxisome proliferators. Tomaszewski, K.E., Agarwal, D.K., Melnick, R.L. Carcinogenesis (1986) [Pubmed]
  24. Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes. Johnson, R.M., Goyette, G., Ravindranath, Y., Ho, Y.S. Free Radic. Biol. Med. (2005) [Pubmed]
  25. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Lenzen, S., Drinkgern, J., Tiedge, M. Free Radic. Biol. Med. (1996) [Pubmed]
  26. Dose-response effects of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis. Shindo, Y., Witt, E., Han, D., Packer, L. J. Invest. Dermatol. (1994) [Pubmed]
  27. Age-dependent modulation of hippocampal long-term potentiation by antioxidant enzymes. Watson, J.B., Arnold, M.M., Ho, Y.S., O'dell, T.J. J. Neurosci. Res. (2006) [Pubmed]
  28. Silica-induced nuclear factor-kappaB activation: involvement of reactive oxygen species and protein tyrosine kinase activation. Kang, J.L., Go, Y.H., Hur, K.C., Castranova, V. J. Toxicol. Environ. Health Part A (2000) [Pubmed]
  29. Induction of cyclooxygenase-2 in macrophages by catalase: role of NF-kappaB and PI3K signaling pathways. Jang, B.C., Kim, D.H., Park, J.W., Kwon, T.K., Kim, S.P., Song, D.K., Park, J.G., Bae, J.H., Mun, K.C., Baek, W.K., Suh, M.H., Hla, T., Suh, S.I. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  30. Resistance to tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis in rat hepatoma cells expressing TNF-alpha is linked to low antioxidant enzyme expression. Chovolou, Y., Watjen, W., Kampkotter, A., Kahl, R. J. Biol. Chem. (2003) [Pubmed]
  31. Effects of acetylsalicylic acid on parameters related to peroxisome proliferation in mouse liver. Cai, Y., Sohlenius, A.K., Andersson, K., Sundberg, C., DePierre, J.W. Biochem. Pharmacol. (1994) [Pubmed]
  32. Thymic peptide modulates glutathione redox cycle and antioxidant enzymes in macrophages. Park, C.S., Li, L., Lau, B.H. J. Leukoc. Biol. (1994) [Pubmed]
  33. Liver-specific catalase expression in transgenic mice inhibits NF-kappaB activation and DNA synthesis induced by the peroxisome proliferator ciprofibrate. Nilakantan, V., Spear, B.T., Glauert, H.P. Carcinogenesis (1998) [Pubmed]
  34. Antioxidant enzyme response to hypericin in EMT6 mouse mammary carcinoma cells. Johnson, S.A., Pardini, R.S. Free Radic. Biol. Med. (1998) [Pubmed]
  35. Protoporphyrin IX and oxidative stress. Afonso, S., Vanore, G., Batlle, A. Free Radic. Res. (1999) [Pubmed]
  36. Protective and determining factors for the overall lipid peroxidation in ultraviolet A1-irradiated fibroblasts: in vitro and in vivo investigations. Dissemond, J., Schneider, L.A., Brenneisen, P., Briviba, K., Wenk, J., Wlaschek, M., Scharffetter-Kochanek, K. Br. J. Dermatol. (2003) [Pubmed]
  37. Inhibition of c-Jun expression induces antioxidant enzymes under serum deprivation. Kim, Y.H., Takahashi, M., Noguchi, N., Suzuki, E., Suzuki, K., Taniguchi, N., Niki, E. Arch. Biochem. Biophys. (2000) [Pubmed]
  38. Increased activity of catalase in tumor cells overexpressing IGFBP-2. Hoeflich, A., Fettscher, O., Preta, G., Lahm, H., Kolb, H.J., Wolf, E., Weber, M.M. Horm. Metab. Res. (2003) [Pubmed]
  39. Nickel-induced lipid peroxidation in the liver of different strains of mice and its relation to nickel effects on antioxidant systems. Rodriguez, R.E., Misra, M., North, S.L., Kasprzak, K.S. Toxicol. Lett. (1991) [Pubmed]
WikiGenes - Universities