Carrier-mediated uptake and phloem systemy of a 350-Dalton chlorinated xenobiotic with an alpha-amino acid function.
In a previous paper we have shown that epsilon-(phenoxyalkanecarboxylyl)-L-Lys conjugates are potent inhibitors of amino acid transport systems and that it is possible to modulate the uptake inhibition by hydrophobic or hydrophilic additions in the 4-position of the aromatic ring (J.F. Chollet, C. Delétage, M. Faucher, L. Miginiac, J.L. Bonnemain [1997] Biochem Biophys Acta 1336: 331-341). In this report we demonstrate that epsilon-(2,4-dichlorophenoxyacetyl)-L-Lys (2,4D-Lys), one of the largest molecules of the series and one of the most potent inhibitors, is a highly permeant conjugate. Uptake of 2,4D-Lys by broad bean (Vicia faba) leaf discs is mediated by an active carrier system (Km1 = 0.2 mM; Vmax1 = 2.4 nmol x cm(-2) x h(-1) at pH 5.0) complemented by an important diffusive component. Among the compounds tested (neutral, basic, and acidic amino acids, auxin, glutathione, and sugars), only the aromatic amino acids clearly compete with 2,4D-Lys. The conjugate accumulates in the vein network, is exported toward the growing organs, and exhibits a distribution pattern different from that of the herbicide moiety. However, over time 2,4D-Lys progressively splits into 2,4D and lysine. Analyses by high-performance liquid chromatography and liquid scintillation spectrometry of the phloem sap collected from the castor bean system, used as a systemy test, indicate decreasing capacities of 2,4D, 2,4D-Lys, and glyphosate, respectively, to move from the epidermis cell wall to the sieve element. Our results show that it is possible to design synthesis of large-size xenobiotics (approximately 350 D) with a lipophilic pole, exhibiting high mobility within the vascular system.[1]References
- Carrier-mediated uptake and phloem systemy of a 350-Dalton chlorinated xenobiotic with an alpha-amino acid function. Delétage-Grandon, C., Chollet, J.F., Faucher, M., Rocher, F., Komor, E., Bonnemain, J.L. Plant Physiol. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg