The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Identification of mutations in the genes for the pollen allergens of eastern red cedar (Juniperus virginiana).

BACKGROUND: Cedar pollens are important causes of seasonal allergic disease in diverse geographical areas. However, pollens from different families and species vary in their propensity to induce allergic responses. OBJECTIVE: To compare the structure of potential allergens from eastern red cedar (Juniperus virginiana) pollen with those of the highly allergenic cedar (mountain cedar, J. ashei) pollens. MATERIALS AND METHODS: The cDNAs for potential pollen allergens, Jun v 1 and Jun v 3, were amplified by reverse transcriptase-polymerase chain reaction, cloned and sequenced. Expression of the native proteins in pollen was characterized by SDS-PAGE and immunoblotting. RESULTS: The cDNA sequence for one potential major allergen, Jun v 1, was highly homologous to those of the other cedar pollens. The second potential allergen, Jun v 3, was also highly homologous to its counterpart in mountain cedar, but a stop codon in the mRNA would result in a protein of only 91 amino acids, which would lack potential N-glycosylation sites and the IgE binding epitopes of the 199 amino acid homologue from mountain cedar pollen, Jun a 3. IgE from the sera of patients with hypersensitivity to cedar pollen bound to eastern red cedar proteins of four different sizes. N-terminal amino acid sequence analysis indicated that two of these proteins (43 and 30 kDa) were either isoforms or processed Jun v 1. No Jun v 3 protein was detected. The N-terminal sequence of an additional 145-kDa allergen, termed Jun v 4, was not homologous to any previously described allergens. CONCLUSION: These findings suggest that mutations in the genes or post-translational modifications of two potentially allergenic proteins might help to explain why the pollen of eastern red cedar is reported to be less allergenic than those of other members of Cupressaceae and Taxodiaceae families.[1]

References

  1. Identification of mutations in the genes for the pollen allergens of eastern red cedar (Juniperus virginiana). Midoro-Horiuti, T., Goldblum, R.M., Brooks, E.G. Clin. Exp. Allergy (2001) [Pubmed]
 
WikiGenes - Universities