The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Serine/threonine phosphatase inhibitors decrease adrenergic arylalkylamine n-acetyltransferase induction in the rat pineal gland.

Adrenergic regulation of the pineal enzyme serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AA-NAT); EC 2.3.1.87] accounts for the circadian rhythm in melatonin formation. In the present study, the role of protein phosphatases in the adrenergic regulation of rat pineal AA-NAT was investigated using specific inhibitors. In cultured pineals, the serine/threonine phosphatase type 1 and type 2A inhibitors okadaic acid and calyculin A significantly decreased adrenergically or cAMP-induced AA-NAT activity, whereas the serine/threonine phosphatase type 2B inhibitor cypermethrin and tyrosine phosphatase inhibitor dephostatin were ineffective. Reverse transcriptase-polymerase chain reaction (RT-PCR) data indicate that okadaic acid exerts its effect on cAMP-dependent AA-NAT induction by downregulating the amount of AA-NAT transcript. The 'third' messengers, inducible cAMP early repressor (ICER) and Fos-related antigene-2 (Fra-2), are believed to play a negative role in pineal AA-NAT transcription. Okadaic acid increased the cAMP responsiveness of neither ICER mRNA nor Fra-2 mRNA. Therefore, the regulatory role of pineal serine/threonine phosphatases in adrenergically stimulated AA-NAT expression probably does not depend on ICER or Fra-2.[1]

References

 
WikiGenes - Universities