Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3.
The cell density-dependent growth inhibition of human SK-N-MC neuroblastoma cells is initiated by increased ganglioside sialidase activity leading to elevated cell surface presentation of ganglioside GM1, a ligand of galectin-1. We herein show that the extent of the cell surface expression of the galectin coincides with marked increases of the sialidase activity. Reverse transcriptase-polymerase chain reaction analysis excludes a regulation at the transcriptional level. Exposure of cells to purified galectin-1 reveals its carbohydrate-dependent activity to reduce cell proliferation. Assays to detect DNA fragmentation biochemically and cytometrically and to block caspases render it unlikely that galectin-1 acts as a classical proapoptotic factor on these cells. Because the chimeric galectin-3 shares binding sites and binding parameters with galectin-1 for these cells, we tested whether this galectin will elicit the same response as the homodimeric cross-linking galectin-1. Evidently, galectin-3 fails to affect cell growth by itself but interferes with galectin-1 upon coincubation. Its proteolytically truncated variant, the C-terminal lectin domain with impaired capacity to form aggregates when surface bound, has only weak binding properties. Thus, the way in which the galectin-1 interacts topologically with an apparently common set of ligands relative to galectin-3 is crucial for eliciting post-binding events. We conclude that galectin-1 is a probable effector in the sialidase-dependent growth control in this system. Moreover, the experiments with galectin-3 reveal functional divergence, most probably based on different topologies of presentation of homologous carbohydrate-binding sites.[1]References
- Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. Kopitz, J., von Reitzenstein, C., André, S., Kaltner, H., Uhl, J., Ehemann, V., Cantz, M., Gabius, H.J. J. Biol. Chem. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg