The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Glucuronidation of 1-hydroxypyrene by human liver microsomes and human UDP-glucuronosyltransferases UGT1A6, UGT1A7, and UGT1A9: development of a high-sensitivity glucuronidation assay for human tissue.

Human UDP-glucuronosyltransferases (UGT, EC 2.4.1.17) involved in the biotransformation of pyrene were investigated by a sensitive fluorometric high-performance liquid chromatography (HPLC)method developed for determining activities toward 1-hydroxypyrene. The endpoint metabolite of pyrene, 1-pyrenylglucuronide, is a well-known urinary biomarker for the assessment of human exposure to polycyclic aromatic hydrocarbons. 1-Pyrenylglucuronide was synthesized using rat liver microsomes as biocatalyst. The yield was satisfactory, 22%. 1-Pyrenylglucuronide, identified by (1)H NMR and by electrospray mass spectrometry, was used for method validation and calibration. The HPLC assay was very sensitive with a quantitation limit of 3 pg (8 fmol) for 1-pyrenylglucuronide. The assay was precise, showing a relative standard deviation of 5% or less at 0.1 to 300 microM 1-hydroxypyrene. Only 2 microg of microsomal protein was required for the assay in human liver. The glucuronidation of 1-hydroxypyrene was catalyzed at high rates in microsomes from pooled or three individual liver samples, showing comparable apparent K(m) values. The formation of 1-pyrenylglucuronide was catalyzed by recombinant human UGT1A6, UGT1A7, and UGT1A9, the K(m) values being 45, 12, and 1 microM, respectively. The apparent K(m) values in human liver microsomes, ranging from 6.9 to 8.6 microM, agreed well with these results. The method provides a sensitive tool for measuring extremely low UGT activities and a specific means for assessing interindividual differences in 1-hydroxypyrene-metabolizing UGT activities in human liver and other tissues.[1]

References

 
WikiGenes - Universities