The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structural conversion between open and closed forms of radixin: low-angle shadowing electron microscopy.

The function of ERM (ezrin/radixin/moesin) proteins as general cross-linkers between actin filaments and plasma membranes is regulated downstream of Rho, through the transition between active and inactive forms. To directly examine the conformational change between the active and inactive forms of ERM proteins, we applied low-angle rotary-shadowing electron microscopy to the radixin molecules, wild-type, T564A-non-phosphorylated-type, and T564E-phosphorylated-type, since most of the active forms are reportedly stabilized in cells by the C-terminal threonine phosphorylation. As a result, the T564A- and wild-type radixin molecules yielded the globular closed forms, approximately 8-14 nm in diameter, with some striations on their surfaces. In contrast, the T564E-radixin molecules tended to take elongated open forms, in which two globular structures measuring approximately 8 nm and approximately 5 nm in diameter were associated with both ends of the filamentous structures. The filamentous structure took either a approximately 20-25 nm-long straight course or a folded course. Taken together with the biochemical and the crystal structural results obtained to date, the closed and open forms represent the inactive and active forms of radixin as cross-linkers between actin filaments and plasma membranes.[1]

References

  1. Structural conversion between open and closed forms of radixin: low-angle shadowing electron microscopy. Ishikawa, H., Tamura, A., Matsui, T., Sasaki, H., Hakoshima, T., Tsukita, S., Tsukita, S. J. Mol. Biol. (2001) [Pubmed]
 
WikiGenes - Universities