The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

RDX  -  radixin

Homo sapiens

Synonyms: Radixin
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RDX


High impact information on RDX

  • These findings indicate that radixin is required for secretion of conjugated bilirubin through its support of Mrp2 localization at BCMs [2].
  • Research in several areas, including unconventional myosins and deafness genes, has converged recently on a group of myosins whose tails contain myosin tail homology 4 (MyTH4) and band 4.1, ezrin, radixin, moesin (FERM) domains [5].
  • Radixin, the dominant ezrin-radixin-moesin protein in hepatocytes, has been reported to selectively tether multidrug-resistance-associated protein 2 to the apical canalicular membrane [6].
  • Methods: An adenovirus-mediated short interfering RNA (siRNA) was used to down-regulate radixin expression in collagen sandwich-cultured rat hepatocytes and morphologic and functional changes were characterized quantitatively [6].
  • Radixin is a member of the ezrin/radixin/moesin (ERM) family of proteins, which play a role in the formation of the membrane-associated cytoskeleton by linking actin filaments and adhesion proteins [7].

Chemical compound and disease context of RDX


Biological context of RDX

  • Radixin functions as a membrane-cytoskeletal crosslinkers in actin-rich cell surface structures and is thereby thought to be essential for cortical cytoskeleton organization, cell motility, adhesion and proliferation [13].
  • 3. Furthermore, by employing a different set of primers, a third sequence was found that was 90% identical to the radixin sequence but contained termination codons and seemed to lack introns [14].
  • Molecular cloning, cDNA sequence, and chromosomal assignment of the human radixin gene and two dispersed pseudogenes [14].
  • However, PCR amplification with "radixin-specific" primers on the hybrid DNA panel yielded an additional, very similar DNA sequence that was further characterized by direct sequencing of PCR products [14].
  • We have cloned and sequenced the human radixin cDNA and found the predicted amino acid sequence for the human protein to be nearly identical to those predicted for radixin in the two other species [14].

Anatomical context of RDX


Associations of RDX with chemical compounds

  • The N-terminal domain of merlin closely resembles those described for the corresponding domains in moesin and radixin and exhibits a cloverleaf architecture with three distinct subdomains [17].
  • A transition from G to A in radixin exon 2 resulted in an exchange of valine by isoleucine at codon 50 in an additional FCD(IIb) specimen [18].
  • In studies assessing the roles of sites of tyrosine phosphorylation, we identified Y(119) in the FERM (band 4.1, Ezrin, radixin and moesin) domain as a phosphorylation site [19].
  • Recombinant full-length and COOH-terminal half radixin were incubated with constitutively active catalytic domain of Rho-kinase, and approximately 30 and approximately 100% of these molecules, respectively, were phosphorylated mainly at the COOH-terminal threonine (T564) [20].
  • Thus, talin contains two integrin binding sites, one in the homologous FERM (band four-point-one, ezrin, radixin, moesin) domain and another near its C terminus [21].

Physical interactions of RDX

  • Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of the adhesion protein ICAM-2 [22].
  • The crystal structures of the radixin FERM domain complexed with the NHERF-1 and NHERF-2 C-terminal peptides revealed a peptide binding site of the FERM domain specific for the 13 residue motif MDWxxxxx(L/I)Fxx(L/F) (Motif-2), which is distinct from Motif-1 [23].
  • Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tails of adhesion molecules CD43 and PSGL-1 [24].

Regulatory relationships of RDX


Other interactions of RDX


Analytical, diagnostic and therapeutic context of RDX


  1. Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS. Maresso, A.W., Baldwin, M.R., Barbieri, J.T. J. Biol. Chem. (2004) [Pubmed]
  2. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Kikuchi, S., Hata, M., Fukumoto, K., Yamane, Y., Matsui, T., Tamura, A., Yonemura, S., Yamagishi, H., Keppler, D., Tsukita, S., Tsukita, S. Nat. Genet. (2002) [Pubmed]
  3. Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. Kojima, H., Nies, A.T., König, J., Hagmann, W., Spring, H., Uemura, M., Fukui, H., Keppler, D. J. Hepatol. (2003) [Pubmed]
  4. Altered expression of the ERM proteins in lung adenocarcinoma. Tokunou, M., Niki, T., Saitoh, Y., Imamura, H., Sakamoto, M., Hirohashi, S. Lab. Invest. (2000) [Pubmed]
  5. Myosin-X: a molecular motor at the cell's fingertips. Sousa, A.D., Cheney, R.E. Trends Cell Biol. (2005) [Pubmed]
  6. Radixin is required to maintain apical canalicular membrane structure and function in rat hepatocytes. Wang, W., Soroka, C.J., Mennone, A., Rahner, C., Harry, K., Pypaert, M., Boyer, J.L. Gastroenterology (2006) [Pubmed]
  7. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S., Hakoshima, T. EMBO J. (2000) [Pubmed]
  8. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Binks, P.R., Nicklin, S., Bruce, N.C. Appl. Environ. Microbiol. (1995) [Pubmed]
  9. Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Kitts, C.L., Cunningham, D.P., Unkefer, P.J. Appl. Environ. Microbiol. (1994) [Pubmed]
  10. Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysosporium. Fournier, D., Halasz, A., Spain, J., Spanggord, R.J., Bottaro, J.C., Hawari, J. Appl. Environ. Microbiol. (2004) [Pubmed]
  11. Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Lachance, B., Robidoux, P.Y., Hawari, J., Ampleman, G., Thiboutot, S., Sunahara, G.I. Mutat. Res. (1999) [Pubmed]
  12. TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Robidoux, P.Y., Hawari, J., Bardai, G., Paquet, L., Ampleman, G., Thiboutot, S., Sunahara, G.I. Arch. Environ. Contam. Toxicol. (2002) [Pubmed]
  13. Radixin: cytoskeletal adopter and signaling protein. Hoeflich, K.P., Ikura, M. Int. J. Biochem. Cell Biol. (2004) [Pubmed]
  14. Molecular cloning, cDNA sequence, and chromosomal assignment of the human radixin gene and two dispersed pseudogenes. Wilgenbus, K.K., Milatovich, A., Francke, U., Furthmayr, H. Genomics (1993) [Pubmed]
  15. Crystallographic characterization of the radixin FERM domain bound to the C-terminal region of the human Na+/H+-exchanger regulatory factor (NHERF). Terawaki, S., Maesaki, R., Okada, K., Hakoshima, T. Acta Crystallogr. D Biol. Crystallogr. (2003) [Pubmed]
  16. Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable. Franck, Z., Gary, R., Bretscher, A. J. Cell. Sci. (1993) [Pubmed]
  17. The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene product. Kang, B.S., Cooper, D.R., Devedjiev, Y., Derewenda, U., Derewenda, Z.S. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
  18. Mutational and immunohistochemical analysis of ezrin-, radixin-, moesin (ERM) molecules in epilepsy-associated glioneuronal lesions. Majores, M., Schick, V., Engels, G., Fassunke, J., Elger, C.E., Schramm, J., Blümcke, I., Becker, A.J. Acta Neuropathol. (2005) [Pubmed]
  19. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. Funakoshi-Tago, M., Pelletier, S., Matsuda, T., Parganas, E., Ihle, J.N. EMBO J. (2006) [Pubmed]
  20. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. Matsui, T., Maeda, M., Doi, Y., Yonemura, S., Amano, M., Kaibuchi, K., Tsukita, S., Tsukita, S. J. Cell Biol. (1998) [Pubmed]
  21. Localization of an integrin binding site to the C terminus of talin. Xing, B., Jedsadayanmata, A., Lam, S.C. J. Biol. Chem. (2001) [Pubmed]
  22. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of the adhesion protein ICAM-2. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S., Tsukita, S., Hakoshima, T. Acta Crystallogr. D Biol. Crystallogr. (2001) [Pubmed]
  23. Structural basis for NHERF recognition by ERM proteins. Terawaki, S., Maesaki, R., Hakoshima, T. Structure (2006) [Pubmed]
  24. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tails of adhesion molecules CD43 and PSGL-1. Takai, Y., Kitano, K., Terawaki, S., Maesaki, R., Hakoshima, T. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. (2007) [Pubmed]
  25. Differential expression of the microspike-associated protein moesin in human tissues. Schwartz-Albiez, R., Merling, A., Spring, H., Möller, P., Koretz, K. Eur. J. Cell Biol. (1995) [Pubmed]
  26. NHE-RF, a regulatory cofactor for Na(+)-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. Murthy, A., Gonzalez-Agosti, C., Cordero, E., Pinney, D., Candia, C., Solomon, F., Gusella, J., Ramesh, V. J. Biol. Chem. (1998) [Pubmed]
  27. Confirmation of linkage in X-linked infantile spasms (West syndrome) and refinement of the disease locus to Xp21.3-Xp22.1. Bruyere, H., Lewis, S., Wood, S., MacLeod, P.J., Langlois, S. Clin. Genet. (1999) [Pubmed]
  28. Quinocarmycin Analog DX-52-1 Inhibits Cell Migration and Targets Radixin, Disrupting Interactions of Radixin with Actin and CD44. Kahsai, A.W., Zhu, S., Wardrop, D.J., Lane, W.S., Fenteany, G. Chem. Biol. (2006) [Pubmed]
  29. Conformational activation of radixin by G13 protein alpha subunit. Vaiskunaite, R., Adarichev, V., Furthmayr, H., Kozasa, T., Gudkov, A., Voyno-Yasenetskaya, T.A. J. Biol. Chem. (2000) [Pubmed]
  30. Structural conversion between open and closed forms of radixin: low-angle shadowing electron microscopy. Ishikawa, H., Tamura, A., Matsui, T., Sasaki, H., Hakoshima, T., Tsukita, S., Tsukita, S. J. Mol. Biol. (2001) [Pubmed]
WikiGenes - Universities