VAP-A binds promiscuously to both v- and tSNAREs.
Proteins that bind to SNAREs may regulate their function. One such protein, VAP-33, was first discovered in Aplysia californica and has two mammalian homologues, VAP-A and VAP-B. VAP-A has been implicated in vesicle targeting to the plasma membrane based on its location in polarized cells and its ability to bind VAMP in vitro. Here, we demonstrate that VAP-A is a widely expressed resident of the ER/Golgi intermediate compartment in COS-7 cells. Moreover, we demonstrate that VAMP- binding and VAP-dimerization require both the N- and C-terminal domains of VAP-A and also that VAP-A binds to a wide range of SNAREs and fusion-related proteins including syntaxin 1A, rbet1, rsec22, alphaSNAP, and NSF. Together, these results suggest that VAP-A is not a regulator of a specific VAMP, but rather may play a more general role in SNARE-mediated vesicle traffic between the ER and Golgi in nonpolarized cells.[1]References
- VAP-A binds promiscuously to both v- and tSNAREs. Weir, M.L., Xie, H., Klip, A., Trimble, W.S. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









