The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

VAMP1  -  vesicle-associated membrane protein 1...

Homo sapiens

Synonyms: SPAX1, SYB1, Synaptobrevin-1, VAMP-1, Vesicle-associated membrane protein 1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of VAMP1

 

Psychiatry related information on VAMP1

 

High impact information on VAMP1

 

Chemical compound and disease context of VAMP1

 

Biological context of VAMP1

  • Mutational analysis of VAMP domains implicated in Ca2+-induced insulin exocytosis [17].
  • In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release [18].
  • By employing deletion mutagenesis we found that deletion of the amino-terminal 18 amino acids of SNAP-23 (encoded in the first exon) dramatically inhibited binding of SNAP-23 to both the target SNARE syntaxin and the vesicle SNARE vesicle-associated membrane protein(VAMP) [19].
  • The coding regions of the synaptobrevin genes are highly homologous to each other and are interrupted at identical positions by introns of different size and sequence [20].
  • Tetanus toxin and the seven serologically distinct botulinal neurotoxins (BoNT/A to BoNT/G) abrogate synaptic transmission at nerve endings through the action of their light chains (L chains), which proteolytically cleave VAMP (vesicle-associated membrane protein)/synaptobrevin, SNAP-25 (synaptosome-associated protein of 25 kDa), or syntaxin [21].
 

Anatomical context of VAMP1

 

Associations of VAMP1 with chemical compounds

  • A substrate analogue with valine in the P1 position corresponding to the sequence of rat VAMP-1 was not cleaved [2].
  • The ability of VAMP to capture protein-free (3)H-labeled trans liposomes was then measured [25].
  • Calcium-triggered exocytosis of histamine is mediated by interacting SNARE proteins, especially by synaptobrevin and SNAP-25 [26].
  • VAMP is phosphorylated by calcium/calmodulin-dependent protein kinase II on serine 61. alpha SNAP is phosphorylated by PKA; however, the beta SNAP isoform is phosphorylated only 20% as efficiently. alpha SNAP phosphorylated by PKA binds to the core docking and fusion complex 10 times weaker than the dephosphorylated form [27].
  • Surface plasmon resonance and pull-down assays revealed Ca(2+)-dependent calmodulin binding (K(d) = 500 nM) to glutathione S-transferase fusion proteins containing synaptobrevin (VAMP 2) domains but not to syntaxin 1 or synaptosomal-associated protein of 25 kDa (SNAP-25) [28].
 

Physical interactions of VAMP1

  • VAP-A has been implicated in vesicle targeting to the plasma membrane based on its location in polarized cells and its ability to bind VAMP in vitro [29].
  • This reaction leads to the previously described disassembly of the fusion complex, since synaptobrevin binding to syntaxin is also reduced. alpha-SNAP binds to a carboxyl-terminal syntaxin fragment (residues 194-288) that also binds synaptobrevin and SNAP-25 [30].
  • However, NSF action on this syntaxin fragment has no effect on the binding of alpha-SNAP or synaptobrevin [30].
  • We found that the synaptosome-associated protein (SNAP-25) and the vesicle-associated membrane proteins (VAMP) coimmunoprecipitate with hTRPC1 in platelets [31].
 

Other interactions of VAMP1

 

Analytical, diagnostic and therapeutic context of VAMP1

References

  1. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Galli, T., Zahraoui, A., Vaidyanathan, V.V., Raposo, G., Tian, J.M., Karin, M., Niemann, H., Louvard, D. Mol. Biol. Cell (1998) [Pubmed]
  2. Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Shone, C.C., Roberts, A.K. Eur. J. Biochem. (1994) [Pubmed]
  3. Identification of exocytosis mediator proteins in peripheral blood neutrophils of patients with chronic myeloid leukemia. Nuyanzina, V.A., Nabokina, S.M. Bull. Exp. Biol. Med. (2004) [Pubmed]
  4. Clostridium botulinum neurotoxins act with a wide range of potencies on SH-SY5Y human neuroblastoma cells. Purkiss, J.R., Friis, L.M., Doward, S., Quinn, C.P. Neurotoxicology (2001) [Pubmed]
  5. Intensive treatment of multiple myeloma and criteria for complete remission. Gore, M.E., Selby, P.J., Viner, C., Clark, P.I., Meldrum, M., Millar, B., Bell, J., Maitland, J.A., Milan, S., Judson, I.R. Lancet (1989) [Pubmed]
  6. VAMP: a video activity monitoring processor for the registration of animal locomotor activity. Kaufmann, R. J. Exp. Biol. (1983) [Pubmed]
  7. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Protopopov, V., Govindan, B., Novick, P., Gerst, J.E. Cell (1993) [Pubmed]
  8. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Blasi, J., Chapman, E.R., Link, E., Binz, T., Yamasaki, S., De Camilli, P., Südhof, T.C., Niemann, H., Jahn, R. Nature (1993) [Pubmed]
  9. Sealed with a twist: complexin and the synaptic SNARE complex. Marz, K.E., Hanson, P.I. Trends Neurosci. (2002) [Pubmed]
  10. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. McNew, J.A., Weber, T., Engelman, D.M., Söllner, T.H., Rothman, J.E. Mol. Cell (1999) [Pubmed]
  11. Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. Gerachshenko, T., Blackmer, T., Yoon, E.J., Bartleson, C., Hamm, H.E., Alford, S. Nat. Neurosci. (2005) [Pubmed]
  12. Circle of life of secretory vesicles in gastric enterochromaffin-like cells. Zanner, R., Gratzl, M., Prinz, C. Ann. N. Y. Acad. Sci. (2002) [Pubmed]
  13. A dual mechanism controlling the localization and function of exocytic v-SNAREs. Martinez-Arca, S., Rudge, R., Vacca, M., Raposo, G., Camonis, J., Proux-Gillardeaux, V., Daviet, L., Formstecher, E., Hamburger, A., Filippini, F., D'Esposito, M., Galli, T. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  14. Beta-amino-thiols inhibit the zinc metallopeptidase activity of tetanus toxin light chain. Martin, L., Cornille, F., Coric, P., Roques, B.P., Fournié-Zaluski, M.C. J. Med. Chem. (1998) [Pubmed]
  15. Infused vincristine and adriamycin with high dose methylprednisolone (VAMP) in advanced previously treated multiple myeloma patients. Forgeson, G.V., Selby, P., Lakhani, S., Zulian, G., Viner, C., Maitland, J., McElwain, T.J. Br. J. Cancer (1988) [Pubmed]
  16. Tetanus toxin mechanism of action in Torpedo electromotor system: a study on different steps in the intoxication process. Herreros, J., Blasi, J., Arribas, M., Marsal, J. Neuroscience (1995) [Pubmed]
  17. Mutational analysis of VAMP domains implicated in Ca2+-induced insulin exocytosis. Regazzi, R., Sadoul, K., Meda, P., Kelly, R.B., Halban, P.A., Wollheim, C.B. EMBO J. (1996) [Pubmed]
  18. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. Quetglas, S., Iborra, C., Sasakawa, N., De Haro, L., Kumakura, K., Sato, K., Leveque, C., Seagar, M. EMBO J. (2002) [Pubmed]
  19. The last exon of SNAP-23 regulates granule exocytosis from mast cells. Vaidyanathan, V.V., Puri, N., Roche, P.A. J. Biol. Chem. (2001) [Pubmed]
  20. Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2. Archer, B.T., Ozçelik, T., Jahn, R., Francke, U., Südhof, T.C. J. Biol. Chem. (1990) [Pubmed]
  21. Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. Vaidyanathan, V.V., Yoshino, K., Jahnz, M., Dörries, C., Bade, S., Nauenburg, S., Niemann, H., Binz, T. J. Neurochem. (1999) [Pubmed]
  22. Increased association of synaptosome-associated protein of 25 kDa with syntaxin and vesicle-associated membrane protein following acrosomal exocytosis of sea urchin sperm. Schulz, J.R., Sasaki, J.D., Vacquier, V.D. J. Biol. Chem. (1998) [Pubmed]
  23. Role of vesicle-associated membrane protein-2, through Q-soluble N-ethylmaleimide-sensitive factor attachment protein receptor/R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor interaction, in the exocytosis of specific and tertiary granules of human neutrophils. Mollinedo, F., Martín-Martín, B., Calafat, J., Nabokina, S.M., Lazo, P.A. J. Immunol. (2003) [Pubmed]
  24. Munc 18a binding to syntaxin 1A and 1B isoforms defines its localization at the plasma membrane and blocks SNARE assembly in a three-hybrid system assay. Pérez-Brangulí, F., Muhaisen, A., Blasi, J. Mol. Cell. Neurosci. (2002) [Pubmed]
  25. Ca2+/calmodulin transfers the membrane-proximal lipid-binding domain of the v-SNARE synaptobrevin from cis to trans bilayers. de Haro, L., Ferracci, G., Opi, S., Iborra, C., Quetglas, S., Miquelis, R., Lévêque, C., Seagar, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  26. Physiology of gastric enterochromaffin-like cells. Prinz, C., Zanner, R., Gratzl, M. Annu. Rev. Physiol. (2003) [Pubmed]
  27. Phosphorylation of synaptic vesicle proteins: modulation of the alpha SNAP interaction with the core complex. Hirling, H., Scheller, R.H. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  28. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. Quetglas, S., Leveque, C., Miquelis, R., Sato, K., Seagar, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  29. VAP-A binds promiscuously to both v- and tSNAREs. Weir, M.L., Xie, H., Klip, A., Trimble, W.S. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  30. The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin. Hanson, P.I., Otto, H., Barton, N., Jahn, R. J. Biol. Chem. (1995) [Pubmed]
  31. A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets. Redondo, P.C., Harper, A.G., Salido, G.M., Pariente, J.A., Sage, S.O., Rosado, J.A. J. Physiol. (Lond.) (2004) [Pubmed]
  32. Assembly of a ternary complex by the predicted minimal coiled-coil-forming domains of syntaxin, SNAP-25, and synaptobrevin. A circular dichroism study. Cánaves, J.M., Montal, M. J. Biol. Chem. (1998) [Pubmed]
  33. Identification of a human homologue of the vesicle-associated membrane protein (VAMP)-associated protein of 33 kDa (VAP-33): a broadly expressed protein that binds to VAMP. Weir, M.L., Klip, A., Trimble, W.S. Biochem. J. (1998) [Pubmed]
  34. A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Logan, M.R., Lacy, P., Odemuyiwa, S.O., Steward, M., Davoine, F., Kita, H., Moqbel, R. Allergy (2006) [Pubmed]
  35. Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins. Nishimura, Y., Hayashi, M., Inada, H., Tanaka, T. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  36. Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of Hirudo medicinalis. Bruns, D., Engers, S., Yang, C., Ossig, R., Jeromin, A., Jahn, R. J. Neurosci. (1997) [Pubmed]
  37. VAMP (synaptobrevin) is present in the plasma membrane of nerve terminals. Taubenblatt, P., Dedieu, J.C., Gulik-Krzywicki, T., Morel, N. J. Cell. Sci. (1999) [Pubmed]
 
WikiGenes - Universities