The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

[14C]Serotonin uptake and [O-methyl-11C]venlafaxine kinetics in porcine brain.

As part of our program of developing PET tracers for neuroimaging of psychotropic compounds, venlafaxine, an antidepressant drug, was evaluated. First, we measured in vitro rates of serotonin uptake in synaptosomes prepared from selected regions of porcine brain. Then, we determined the pharmacokinetics of venlafaxine, [O-methyl-11C]-labeled for PET. Synaptosomal studies showed that the active uptake of [14C]5-HT differed markedly between brain regions, with highest rates in hypothalamus, raphé region, and thalamus, and lowest rates in cortex and cerebellum. PET studies showed that the unidirectional rate of uptake of [O-methyl-11C]venlafaxine from blood to brain was highest in the hypothalamus, raphé region, thalamus and basal ganglia and lowest in the cortex and cerebellum. Under normal physiological conditions, the capillary permeability-surface area (PS) product for [O-methyl-11C]venlafaxine could not be estimated, because of complete flow-limitation of the cerebral uptake. Nevertheless, a correlation occurred between the apparent partition volume of the radiotracer and the rate of active uptake of 5-HT in selected regions of the porcine brain. During hypercapnia, limitations of blood-brain transfer were observed, giving PS-products for water that were only ca. 50% higher than those of venlafaxine. Thus, under normal physiological conditions, the rate of uptake of venlafaxine from blood into brain is completely flow-limited.[1]

References

  1. [14C]Serotonin uptake and [O-methyl-11C]venlafaxine kinetics in porcine brain. Smith, D.F., Hansen, S.B., Østergaard, L., Gee, A.D., Danielsen, E., Ishizu, K., Bender, D., Poulsen, P.H., Gjedde, A. Nucl. Med. Biol. (2001) [Pubmed]
 
WikiGenes - Universities