The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of protein kinase B ( PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest.

The intermediate filament cytoskeleton is composed of keratins in all epithelial cells and imparts mechanical integrity to these cells. However, beyond this shared function, the functional significance of the carefully regulated tissue- and differentiation-specific expression of the large keratin family of cytoskeletal proteins remains unclear. We recently demonstrated that expression of keratin K10 or K16 may regulate the phosphorylation of the retinoblastoma protein (pRb), inhibiting (K10) or stimulating (K16) cell proliferation (J. M. Paramio, M. L. Casanova, C. Segrelles, S. Mittnacht, E. B. Lane, and J. L. Jorcano, Mol. Cell. Biol. 19:3086-3094, 1999). Here we show that keratin K10 function as a negative modulator of cell cycle progression involves changes in the phosphoinositide 3-kinase ( PI-3K) signal transduction pathway. Physical interaction of K10 with Akt ( protein kinase B [ PKB]) and atypical PKCzeta causes sequestration of these kinases within the cytoskeleton and inhibits their intracellular translocation. As a consequence, the expression of K10 impairs the activation of PKB and PKCzeta. We also demonstrate that this inhibition impedes pRb phosphorylation and reduces the expression of cyclins D1 and E. Functional and biochemical data also demonstrate that the interaction between K10 and these kinases involves the non-alpha-helical amino domain of K10 (NTerm). Together, these results suggest new and essential roles for the keratins as modulators of specific signal transduction pathways.[1]

References

  1. Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Paramio, J.M., Segrelles, C., Ruiz, S., Jorcano, J.L. Mol. Cell. Biol. (2001) [Pubmed]
 
WikiGenes - Universities