The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

KRT1  -  keratin 1, type II

Homo sapiens

Synonyms: 67 kDa cytokeratin, CK-1, CK1, Cytokeratin-1, EHK, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of KRT1


Psychiatry related information on KRT1


High impact information on KRT1


Chemical compound and disease context of KRT1


Biological context of KRT1


Anatomical context of KRT1

  • These data implicate KRT1, the type II keratin expressed in suprabasilar keratinocytes, as a candidate gene in this family with EHK [16].
  • Intermediate filaments (IFs) of the cytokeratin (CK) type are cytoskeletal elements typical for epithelial differentiation [19].
  • We studied the K1 and K10 genes in blood and in the keratinocytes and fibroblasts of lesional and nonlesional skin from three patients with epidermal nevi and four of their offspring with epidermolytic hyperkeratosis [5].
  • We recently described transgenic mice that express point-mutant human K18 (Ku, N.-O., S. Michie, R.G. Oshima, and M.B. Omary. 1995. J. Cell Biol. 131:1303-1314) and develop chronic hepatitis and hepatocyte fragility in association with hepatocyte keratin filament disruption [20].
  • This demonstration of functional importance of the specific CK-complement in an epithelial cell indicates a contribution of cell type-specific factors to cytoplasmic IF compartmentalization and that the specific CK complement can be crucial for functions and longevity of a given kind of epithelium [21].

Associations of KRT1 with chemical compounds

  • Five out of 6 patients with KRT10 mutations benefited from treatment with oral acitretin (5-25mg/day) or topical tretinoin/tazarotene, but none of the patients with KRT1 mutations derived any benefit [3].
  • We have investigated keratin interactions in vivo by sequentially extracting water-insoluble proteins from normal human epidermis with increasing concentrations of urea (2, 4, 6, and 9.5 M) and examining each extract by one- and two-dimensional gel electrophoresis, immunoblot analysis using monoclonal anti-keratin antibodies, and EM [22].
  • A 54-kDa protein was isolated by a biotin-high molecular mass kininogen (HK) affinity column that, on aminoterminal sequencing of tryptic digests, was identified as cytokeratin 1 [23].
  • The protein material on the inner CE 'core' adjacent or attached to the lipid envelope consists of cystatin alpha (5%), involucrin (2%), keratin filaments (3%) and possibly other as yet unidentified protein(s)(2-5%) [24].
  • In culture, these HaCaT-ras clones expressed epidermal differentiation markers, such as keratins K1 and 10, at high density or upon depletion of retinoic acid [25].

Physical interactions of KRT1

  • However, when K8 or K18 bound to nitrocellulose were incubated with complementary keratin they became reactive with this antibody [26].
  • We report that the MAb LE65 does not recognize individual keratin polypeptides but it instead reacts with a complex of K8 with K18 [27].
  • The purified K14 tail domain binds keratin filaments in vitro with specificity (kD approximately 2 microM) [28].
  • A proline residue in the alpha-helical rod domain of type I keratin 16 destabilizes keratin heterotetramers [29].
  • The distribution of desmosomal complexes and their affiliated tonofilaments, as well as the regulation of cytokeratin/vimentin IF and actin microfilament contents were assessed during construction of this in vitro "epithelium." 72/22 cells formed desmosomal junctions throughout the length of the cellular perimeter [30].

Enzymatic interactions of KRT1

  • The kinase activity coimmunoprecipitated with CK8 and 18 and phosphorylated immunoprecipitates of the CK [31].
  • Cytokeratin gating led to a clear-cut separation of S-phase fractions within the respective ploidy groups, irrespective of manual or automated dissociation [32].

Co-localisations of KRT1


Regulatory relationships of KRT1


Other interactions of KRT1

  • This marked association is not seen with simple epithelial type II keratins, vimentin, or with type I keratins, providing a possible explanation for the greater stability of the epidermal keratin filament architecture over that of other cell types [43].
  • The major structural proteins of epithelia, the keratins, and the keratin filament-associated protein, filaggrin, were analyzed in more than 50 samples of human embryonic and fetal skin by one-dimensional SDS PAGE and immunoblotting with monoclonal and polyclonal antibodies [44].
  • We show that the carboxy terminal "tail" of DPI associates directly with the amino terminal "head" of type II epidermal keratins, including K1, K2, K5, and K6 [43].
  • These investigations identify a new function for cytokeratin 1 as a kininogen binding protein [23].
  • In competitive inhibition experiments, anti-CK1, anti-uPAR, or anti-gC1qR blocked both biotin-HK binding and prekallikrein (PK) activation on HUVECs with an inhibitory concentration of 50% (IC(50)) of 300 to 350 nM, 50 to 60 nM, or 35 to 100 nM, respectively [45].

Analytical, diagnostic and therapeutic context of KRT1


  1. Novel splice site mutation in keratin 1 underlies mild epidermolytic palmoplantar keratoderma in three kindreds. Hatsell, S.J., Eady, R.A., Wennerstrand, L., Dopping-Hepenstal, P., Leigh, I.M., Munro, C., Kelsell, D.P. J. Invest. Dermatol. (2001) [Pubmed]
  2. Evidence for novel functions of the keratin tail emerging from a mutation causing ichthyosis hystrix. Sprecher, E., Ishida-Yamamoto, A., Becker, O.M., Marekov, L., Miller, C.J., Steinert, P.M., Neldner, K., Richard, G. J. Invest. Dermatol. (2001) [Pubmed]
  3. Phenotypic/genotypic correlations in patients with epidermolytic hyperkeratosis and the effects of retinoid therapy on keratin expression. Virtanen, M., Gedde-Dahl, T., Mörk, N.J., Leigh, I., Bowden, P.E., Vahlquist, A. Acta Derm. Venereol. (2001) [Pubmed]
  4. The genetic basis of epidermolytic hyperkeratosis: a disorder of differentiation-specific epidermal keratin genes. Cheng, J., Syder, A.J., Yu, Q.C., Letai, A., Paller, A.S., Fuchs, E. Cell (1992) [Pubmed]
  5. Genetic and clinical mosaicism in a type of epidermal nevus. Paller, A.S., Syder, A.J., Chan, Y.M., Yu, Q.C., Hutton, E., Tadini, G., Fuchs, E. N. Engl. J. Med. (1994) [Pubmed]
  6. Intraoperative detection of lymph node micrometastasis with flow cytometry in non-small cell lung cancer. Ito, M., Minamiya, Y., Kawai, H., Saito, S., Saito, H., Imai, K., Ogawa, J. J. Thorac. Cardiovasc. Surg. (2005) [Pubmed]
  7. Protein misfolding, aggregation, and degradation in disease. Gregersen, N., Bolund, L., Bross, P. Mol. Biotechnol. (2005) [Pubmed]
  8. Autoantibody reactivity in serum of patients with Alzheimer's disease and other age-related dementias. Schott, K., Wormstall, H., Dietrich, M., Klein, R., Batra, A. Psychiatry research. (1996) [Pubmed]
  9. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Smith, F.J., Irvine, A.D., Terron-Kwiatkowski, A., Sandilands, A., Campbell, L.E., Zhao, Y., Liao, H., Evans, A.T., Goudie, D.R., Lewis-Jones, S., Arseculeratne, G., Munro, C.S., Sergeant, A., O'Regan, G., Bale, S.J., Compton, J.G., DiGiovanna, J.J., Presland, R.B., Fleckman, P., McLean, W.H. Nat. Genet. (2006) [Pubmed]
  10. Keratin 8 mutations in patients with cryptogenic liver disease. Ku, N.O., Gish, R., Wright, T.L., Omary, M.B. N. Engl. J. Med. (2001) [Pubmed]
  11. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. Braun, S., Pantel, K., Müller, P., Janni, W., Hepp, F., Kentenich, C.R., Gastroph, S., Wischnik, A., Dimpfl, T., Kindermann, G., Riethmüller, G., Schlimok, G. N. Engl. J. Med. (2000) [Pubmed]
  12. A mutational hot spot in keratin 10 (KRT 10) in patients with epidermolytic hyperkeratosis. Rothnagel, J.A., Fisher, M.P., Axtell, S.M., Pittelkow, M.R., Anton-Lamprecht, I., Huber, M., Hohl, D., Roop, D.R. Hum. Mol. Genet. (1993) [Pubmed]
  13. Keratin expression and its significance in five cultured melanoma cell lines derived from primary, recurrent and metastasized melanomas. Katagata, Y., Kondo, S. FEBS Lett. (1997) [Pubmed]
  14. Cytokeratin subtypes and involucrin in squamous cell carcinoma of the vulva. An immunohistochemical study of 41 cases. Ansink, A., Mooi, W.J., van Doornewaard, G., van Tinteren, H., Heintz, A.P., Ivanyi, D. Cancer (1995) [Pubmed]
  15. Epithelial markers and differentiation in adnexal neoplasms of the skin: an immunohistochemical study including individual cytokeratins. Demirkesen, C., Hoede, N., Moll, R. J. Cutan. Pathol. (1995) [Pubmed]
  16. Epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma). Genetic linkage to chromosome 12q in the region of the type II keratin gene cluster. Pulkkinen, L., Christiano, A.M., Knowlton, R.G., Uitto, J. J. Clin. Invest. (1993) [Pubmed]
  17. Splice site and deletion mutations in keratin (KRT1 and KRT10) genes: unusual phenotypic alterations in Scandinavian patients with epidermolytic hyperkeratosis. Virtanen, M., Smith, S.K., Gedde-Dahl, T., Vahlquist, A., Bowden, P.E. J. Invest. Dermatol. (2003) [Pubmed]
  18. New mutations in keratin 1 that cause bullous congenital ichthyosiform erythroderma and keratin 2e that cause ichthyosis bullosa of Siemens. Whittock, N.V., Ashton, G.H., Griffiths, W.A., Eady, R.A., McGrath, J.A. Br. J. Dermatol. (2001) [Pubmed]
  19. Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation. Knapp, A.C., Franke, W.W. Cell (1989) [Pubmed]
  20. Susceptibility to hepatotoxicity in transgenic mice that express a dominant-negative human keratin 18 mutant. Ku, N.O., Michie, S.A., Soetikno, R.M., Resurreccion, E.Z., Broome, R.L., Oshima, R.G., Omary, M.B. J. Clin. Invest. (1996) [Pubmed]
  21. Ectopic synthesis of epidermal cytokeratins in pancreatic islet cells of transgenic mice interferes with cytoskeletal order and insulin production. Blessing, M., Rüther, U., Franke, W.W. J. Cell Biol. (1993) [Pubmed]
  22. Differential extraction of keratin subunits and filaments from normal human epidermis. Eichner, R., Kahn, M. J. Cell Biol. (1990) [Pubmed]
  23. Identification of cytokeratin 1 as a binding protein and presentation receptor for kininogens on endothelial cells. Hasan, A.A., Zisman, T., Schmaier, A.H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  24. A model for the hierarchical structure of the human epidermal cornified cell envelope. Steinert, P.M. Cell Death Differ. (1995) [Pubmed]
  25. Epidermal morphogenesis and keratin expression in c-Ha-ras-transfected tumorigenic clones of the human HaCaT cell line. Breitkreutz, D., Boukamp, P., Ryle, C.M., Stark, H.J., Roop, D.R., Fusenig, N.E. Cancer Res. (1991) [Pubmed]
  26. A keratin antibody recognizing a heterotypic complex: epitope mapping to complementary locations on both components of the complex. Waseem, A., Lane, E.B., Harrison, D., Waseem, N. Exp. Cell Res. (1996) [Pubmed]
  27. Identification of a novel keratin epitope: evidence for association between non-helical sub-domains L12 during filament assembly. Waseem, A., White, K., Waseem, N.H. Int. J. Biochem. Cell Biol. (1997) [Pubmed]
  28. The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro. Bousquet, O., Ma, L., Yamada, S., Gu, C., Idei, T., Takahashi, K., Wirtz, D., Coulombe, P.A. J. Cell Biol. (2001) [Pubmed]
  29. A proline residue in the alpha-helical rod domain of type I keratin 16 destabilizes keratin heterotetramers. Wawersik, M., Paladini, R.D., Noensie, E., Coulombe, P.A. J. Biol. Chem. (1997) [Pubmed]
  30. Cytoarchitectural analysis of epithelial sheets formed in vitro by hepatic tumor cells possessing defined intermediate-sized filament cytoskeletal abnormalities. Ryan, M.P., Borenfreund, E., Higgins, P.J. Am. J. Pathol. (1989) [Pubmed]
  31. PKC epsilon-related kinase associates with and phosphorylates cytokeratin 8 and 18. Omary, M.B., Baxter, G.T., Chou, C.F., Riopel, C.L., Lin, W.Y., Strulovici, B. J. Cell Biol. (1992) [Pubmed]
  32. Use of a mechanical dissociation device to improve standardization of flow cytometric cytokeratin DNA measurements of colon carcinomas. Brockhoff, G., Fleischmann, S., Meier, A., Wachs, F.P., Hofstaedter, F., Knuechel, R. Cytometry. (1999) [Pubmed]
  33. Demonstration of cytokeratin in endothelial cells of the synovial microvasculature in situ and in vitro. Mattey, D.L., Nixon, N., Wynn-Jones, C., Dawes, P.T. Br. J. Rheumatol. (1993) [Pubmed]
  34. Defining the properties of the nonhelical tail domain in type II keratin 5: insight from a bullous disease-causing mutation. Gu, L.H., Coulombe, P.A. Mol. Biol. Cell (2005) [Pubmed]
  35. Immunohistochemical evidence for a mesothelial contribution to the ventral wall of the avian aorta. Pérez-Pomares, J.M., Macías-López, D., García-Garrido, L., Muñoz-Chápuli, R. Histochem. J. (1999) [Pubmed]
  36. The Ca2+-binding S100A2 protein is differentially expressed in epithelial tissue of glandular or squamous origin. Nagy, N., Hoyaux, D., Gielen, I., Schäfer, B.W., Pochet, R., Heizmann, C.W., Kiss, R., Salmon, I., Decaestecker, C. Histol. Histopathol. (2002) [Pubmed]
  37. A well-defined in vitro three-dimensional culture of human endometrium and its applicability to endometrial cancer invasion. Park, D.W., Choi, D.S., Ryu, H.S., Kwon, H.C., Joo, H., Min, C.K. Cancer Lett. (2003) [Pubmed]
  38. Novel mutations in keratin 16 gene underly focal non-epidermolytic palmoplantar keratoderma (NEPPK) in two families. Shamsher, M.K., Navsaria, H.A., Stevens, H.P., Ratnavel, R.C., Purkis, P.E., Kelsell, D.P., McLean, W.H., Cook, L.J., Griffiths, W.A., Gschmeissner, S. Hum. Mol. Genet. (1995) [Pubmed]
  39. A keratin peptide inhibits mannose-binding lectin. Montalto, M.C., Collard, C.D., Buras, J.A., Reenstra, W.R., McClaine, R., Gies, D.R., Rother, R.P., Stahl, G.L. J. Immunol. (2001) [Pubmed]
  40. Epidermolytic hyperkeratosis: applied molecular genetics. DiGiovanna, J.J., Bale, S.J. J. Invest. Dermatol. (1994) [Pubmed]
  41. Mucoepidermoid carcinoma of the salivary glands: immunohistochemical distribution of intermediate filament proteins, involucrin and secretory proteins. Huang, J.W., Mori, M., Yamada, K., Isono, K., Ueno, K., Shinohara, M., Harada, T., Oka, M. Anticancer Res. (1992) [Pubmed]
  42. Cytokeratin-positive cells in preoperative peripheral blood and bone marrow aspirates of patients with colorectal cancer. Werther, K., Normark, M., Brünner, N., Nielsen, H.J. Scand. J. Clin. Lab. Invest. (2002) [Pubmed]
  43. Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. Kouklis, P.D., Hutton, E., Fuchs, E. J. Cell Biol. (1994) [Pubmed]
  44. Expression of epidermal keratins and filaggrin during human fetal skin development. Dale, B.A., Holbrook, K.A., Kimball, J.R., Hoff, M., Sun, T.T. J. Cell Biol. (1985) [Pubmed]
  45. Expression and colocalization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cells. Mahdi, F., Shariat-Madar, Z., Todd, R.F., Figueroa, C.D., Schmaier, A.H. Blood (2001) [Pubmed]
WikiGenes - Universities