The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A potential role for human cohesin in mitotic spindle aster assembly.

The cohesin multiprotein complex containing SMC1, SMC3, Scc3 (SA), and Scc1 (Rad21) is required for sister chromatid cohesion in eukaryotes. Although metazoan cohesin associates with chromosomes and was shown to function in the establishment of sister chromatid cohesion during interphase, the majority of cohesin was found to be off chromosomes and reside in the cytoplasm in metaphase. Despite its dissociation from chromosomes, however, microinjection of an antibody against human SMC1 led to disorganization of the metaphase plate and cell cycle arrest, indicating that human cohesin still plays an important role in metaphase. To address the mitotic function of human cohesin, the subcellular localization of cohesin components was reexamined in human cells. Interestingly, we found that cohesin localizes to the spindle poles during mitosis and interacts with NuMA, a spindle pole-associated factor required for mitotic spindle organization. The interaction with NuMA persists during interphase. Similar to NuMA, a significant amount of cohesin was found to associate with the nuclear matrix. Furthermore, in the absence of cohesin, mitotic spindle asters failed to form in vitro. Our results raise the intriguing possibility that in addition to its well demonstrated function in sister chromatid cohesion, cohesin may be involved in spindle assembly during mitosis.[1]

References

  1. A potential role for human cohesin in mitotic spindle aster assembly. Gregson, H.C., Schmiesing, J.A., Kim, J.S., Kobayashi, T., Zhou, S., Yokomori, K. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities