The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Molecular mechanisms of cefoxitin resistance in Escherichia coli from the Toronto area hospitals.

Escherichia coli may become resistant to cephamycines and oxyimino cephalosporins by virtue of promotor and attenuator mutations or because they have acquired mobilized beta-lactamases from other gram-negative bacilli. This study examined Canadian strains to determine how often promotor and/or attenuator mutations account for this mechanism of resistance and the extent to which clonal spread of these organisms has occurred. We sequenced the promotor and attenuator region of 30 strains resistant to cefoxitin. Twenty-two strains had promotor mutations, 26 had attenuator mutations. Most promotor mutations resulted either in a change in the -35 promotor region towards the E. coli sigma 70 consensus sequence or in the creation of a new consensus hexamer upstream. Eight strains had mutations that increased the typical ampC 16-nucleotide spacer region to the consensus 17- or an 18-nucleotide sequence. Of the attenuator mutations, most did not substantially affect the attenuator loop. Several of the mutations have previously been described in South Africa, Scandinavia, and France. There was evidence that strains bearing certain mutations were clonally disseminated; however, the 11 strains bearing a complex set of attenuator mutations were not. The majority of cephamycin resistant E. coli strains in Toronto have attenuator and/or promotor mutations upstream of the chromosomal ampC gene.[1]

References

  1. Molecular mechanisms of cefoxitin resistance in Escherichia coli from the Toronto area hospitals. Forward, K.R., Willey, B.M., Low, D.E., McGeer, A., Kapala, M.A., Kapala, M.M., Burrows, L.L. Diagn. Microbiol. Infect. Dis. (2001) [Pubmed]
 
WikiGenes - Universities