The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A novel Rtg2p activity regulates nitrogen catabolism in yeast.

The inactivity of Ure2p, caused by either a ure2 mutation or the presence of the [URE3] prion, increases DAL5 transcription and thus enables Saccharomyces cerevisiae to take up ureidosuccinate (USA+). Rtg2p regulates transcription of glutamate-repressible genes by facilitation of the nuclear entry of the Rtg1 and Rtg3 proteins. We find that rtg2 Delta cells take up USA even without the presence of [URE3]. Thus, the USA+ phenotype of rtg2 Delta strains is not the result generation of the [URE3] prion but is a regulatory effect. Because rtg1 Delta or rtg3 Delta mutations or the presence of glutamate do not produce the USA+ phenotype, this is a novel function of Rtg2p. The USA+ phenotype of rtg2 Delta strains depends on GLN3, is caused by overexpression of DAL5, and is blocked by mks1 Delta, but not by overexpression of Ure2p. These characteristics suggest that Rtg2p acts in the upstream part of the nitrogen catabolism regulation pathway.[1]

References

  1. A novel Rtg2p activity regulates nitrogen catabolism in yeast. Pierce, M.M., Maddelein, M.L., Roberts, B.T., Wickner, R.B. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
 
WikiGenes - Universities