The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Polyunsaturated fatty acids stimulate hepatic UCP-2 expression via a PPARalpha-mediated pathway.

The discovery of homologs of the brown fat uncoupling protein(s) (UCP) UCP-2 and UCP-3 revived the hypothesis of uncoupling protein involvement in the regulation of energy metabolism. Thus we hypothesized that UCP-2 would be regulated in the hepatocyte by fatty acids, which are known to control other energy-related metabolic processes. Treatment with 250 microM palmitic acid was without effect on UCP-2 expression, whereas 250 microM oleic acid exhibited a modest eightfold increase. Eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, exerted a 50-fold upregulation of UCP-2 that was concentration dependent. This effect was seen within 12 h and was maximal by 36 h. Aspirin blocked the induction of UCP-2 by EPA, indicating involvement of the prostaglandin pathway. Hepatocytes treated with arachidonic acid, the immediate precursor to the prostaglandins, also exhibited an aspirin-inhibitable increase in UCP-2 levels, further supporting the involvement of prostaglandins in regulating hepatic UCP-2. The peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist Wy-14643 stimulated UCP-2 mRNA levels as effectively as EPA. These data indicate that UCP-2 is upregulated by polyunsaturated fatty acids, potentially through a prostaglandin/PPARalpha-mediated pathway.[1]


  1. Polyunsaturated fatty acids stimulate hepatic UCP-2 expression via a PPARalpha-mediated pathway. Armstrong, M.B., Towle, H.C. Am. J. Physiol. Endocrinol. Metab. (2001) [Pubmed]
WikiGenes - Universities