The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AC1O5MXQ     (2E,4E,6E,8E,10E)-icosa- 2,4,6,8,10...

Synonyms: LS-63774, Jsp003043, 25378-27-2, 32839-30-8, 1278561-18-4, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Eicosapentaenoic acid

 

Psychiatry related information on Eicosapentaenoic acid

 

High impact information on Eicosapentaenoic acid

  • In addition, cells lacking endogenous alkyl-peroxide-generating systems and thus having a low 'peroxide tone' cannot oxygenate EPA via cyclooxygenase-1 [11].
  • A second major consequence of elevated EPA/AA ratios is significantly increased production of 3-series PGs, including PGE3, via cyclooxygenase-2 [11].
  • Recent work has confirmed the roles of omega3 fatty acids in gene transcription and signal transduction, and has given insight into the effects of eicosapentaenoic acid (EPA) and the EPA/arachidonic acid (AA) ratio on prostanoid (PG) metabolism and function [11].
  • We report the crystal structure of the PPAR delta ligand-binding domain (LBD) bound to either the FA eicosapentaenoic acid (EPA) or the synthetic fibrate GW2433 [12].
  • The increased percentage of EPA and decreased percentage of AA in the phospholipids of the macrophages prepared from the fish oil-fed mice was reflected in a reduction in the amount of PGE2 and PGI2 in the medium relative to identically incubated macrophages prepared from corn oil-fed mice [13].
 

Chemical compound and disease context of Eicosapentaenoic acid

 

Biological context of Eicosapentaenoic acid

  • During this short-term study, ingestion of both EPA and DCHA resulted in reduced platelet aggregation in response to collagen [19].
  • Using a series of transformations with increasing numbers of transgenes, we demonstrate the incremental production of VLCPUFAs, achieving AA levels of up to 25% and EPA levels of up to 15% of total seed fatty acids [20].
  • The IC50 of EPA was 4.8 microM [21].
  • EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation [22].
  • Inhibitors of cyclooxygenase and lipoxygenase or addition of antioxidants did not influence the effect of EPA or AA on cell proliferation [23].
 

Anatomical context of Eicosapentaenoic acid

  • Experiments examining the influence of Promega dosage indicated that the AA/EPA ratio in neutrophil lipids decreased in a dose-dependent manner [24].
  • Compliance with the fish oil supplement was good as judged by incorporation of EPA and DHA in plasma and red blood cell phospholipids [25].
  • The concentration of EPA to produce 50% inhibition of I(Ca) was 0.8 microM in neonatal rat heart cells and 2.1 microM in adult ventricular myocytes [1].
  • After cardiac myocytes were treated with 5 or 10 microM EPA, the peak INa (elicited by a single-step voltage change with pulses from -80 to -30 mV) was decreased by 51% +/- 8% (P < 0.01; n = 10) and 64% +/- 5% (P < 0.001; n = 21), respectively, within 2 min [21].
  • The present study shows that AA and EPA reduce the proliferation rate of HL-60 cells [23].
 

Associations of Eicosapentaenoic acid with other chemical compounds

 

Gene context of Eicosapentaenoic acid

 

Analytical, diagnostic and therapeutic context of Eicosapentaenoic acid

References

  1. Suppression of voltage-gated L-type Ca2+ currents by polyunsaturated fatty acids in adult and neonatal rat ventricular myocytes. Xiao, Y.F., Gomez, A.M., Morgan, J.P., Lederer, W.J., Leaf, A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. Subhemolytic doses of Escherichia coli hemolysin evoke large quantities of lipoxygenase products in human neutrophils. Grimminger, F., Scholz, C., Bhakdi, S., Seeger, W. J. Biol. Chem. (1991) [Pubmed]
  3. Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Flachs, P., Mohamed-Ali, V., Horakova, O., Rossmeisl, M., Hosseinzadeh-Attar, M.J., Hensler, M., Ruzickova, J., Kopecky, J. Diabetologia (2006) [Pubmed]
  4. n-3 fatty acids and cardiovascular disease. Breslow, J.L. Am. J. Clin. Nutr. (2006) [Pubmed]
  5. n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Lemaitre, R.N., King, I.B., Mozaffarian, D., Kuller, L.H., Tracy, R.P., Siscovick, D.S. Am. J. Clin. Nutr. (2003) [Pubmed]
  6. Omega-3 fatty acids in the treatment of psychiatric disorders. Peet, M., Stokes, C. Drugs (2005) [Pubmed]
  7. Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Moses, A.W., Slater, C., Preston, T., Barber, M.D., Fearon, K.C. Br. J. Cancer (2004) [Pubmed]
  8. Prolyl endopeptidase inhibitory activity of unsaturated fatty acids. Park, Y.S., Jang, H.J., Lee, K.H., Hahn, T.R., Paik, Y.S. J. Agric. Food Chem. (2006) [Pubmed]
  9. Omega-3 fatty acid deficiencies in neurodevelopment, aggression and autonomic dysregulation: opportunities for intervention. Hibbeln, J.R., Ferguson, T.A., Blasbalg, T.L. International review of psychiatry (Abingdon, England) (2006) [Pubmed]
  10. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. Freeman, M.P., Hibbeln, J.R., Wisner, K.L., Davis, J.M., Mischoulon, D., Peet, M., Keck, P.E., Marangell, L.B., Richardson, A.J., Lake, J., Stoll, A.L. The Journal of clinical psychiatry (2006) [Pubmed]
  11. Cyclooxygenases, peroxide tone and the allure of fish oil. Smith, W.L. Curr. Opin. Cell Biol. (2005) [Pubmed]
  12. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Xu, H.E., Lambert, M.H., Montana, V.G., Parks, D.J., Blanchard, S.G., Brown, P.J., Sternbach, D.D., Lehmann, J.M., Wisely, G.B., Willson, T.M., Kliewer, S.A., Milburn, M.V. Mol. Cell (1999) [Pubmed]
  13. Dietary fish oil modulates macrophage fatty acids and decreases arthritis susceptibility in mice. Leslie, C.A., Gonnerman, W.A., Ullman, M.D., Hayes, K.C., Franzblau, C., Cathcart, E.S. J. Exp. Med. (1985) [Pubmed]
  14. Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. Kang, J.X., Leaf, A. Am. J. Clin. Nutr. (2000) [Pubmed]
  15. Rapid modulation of lung and liver macrophage phospholipid fatty acids in endotoxemic rats by continuous enteral feeding with n-3 and gamma-linolenic fatty acids. Palombo, J.D., DeMichele, S.J., Lydon, E.E., Gregory, T.J., Banks, P.L., Forse, R.A., Bistrian, B.R. Am. J. Clin. Nutr. (1996) [Pubmed]
  16. Prostate cancer risk and consumption of fish oils: a dietary biomarker-based case-control study. Norrish, A.E., Skeaff, C.M., Arribas, G.L., Sharpe, S.J., Jackson, R.T. Br. J. Cancer (1999) [Pubmed]
  17. Differential effects of omega-3 and omega-6 Fatty acids on gene expression in breast cancer cells. Hammamieh, R., Chakraborty, N., Miller, S.A., Waddy, E., Barmada, M., Das, R., Peel, S.A., Day, A.A., Jett, M. Breast Cancer Res. Treat. (2007) [Pubmed]
  18. Synthesis of structured lipids containing medium-chain and omega-3 fatty acids. Hamam, F., Shahidi, F. J. Agric. Food Chem. (2006) [Pubmed]
  19. Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acids in humans. von Schacky, C., Weber, P.C. J. Clin. Invest. (1985) [Pubmed]
  20. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Wu, G., Truksa, M., Datla, N., Vrinten, P., Bauer, J., Zank, T., Cirpus, P., Heinz, E., Qiu, X. Nat. Biotechnol. (2005) [Pubmed]
  21. Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes. Xiao, Y.F., Kang, J.X., Morgan, J.P., Leaf, A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  22. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Liu, G., Bibus, D.M., Bode, A.M., Ma, W.Y., Holman, R.T., Dong, Z. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  23. Effect of n-3 and n-6 fatty acids on proliferation and differentiation of promyelocytic leukemic HL-60 cells. Finstad, H.S., Kolset, S.O., Holme, J.A., Wiger, R., Farrants, A.K., Blomhoff, R., Drevon, C.A. Blood (1994) [Pubmed]
  24. Dietary n-3 fatty acid effects on neutrophil lipid composition and mediator production. Influence of duration and dosage. Chilton, F.H., Patel, M., Fonteh, A.N., Hubbard, W.C., Triggiani, M. J. Clin. Invest. (1993) [Pubmed]
  25. Do fish oils prevent restenosis after coronary angioplasty? Leaf, A., Jorgensen, M.B., Jacobs, A.K., Cote, G., Schoenfeld, D.A., Scheer, J., Weiner, B.H., Slack, J.D., Kellett, M.A., Raizner, A.E. Circulation (1994) [Pubmed]
  26. Effects of altering the eicosanoid precursor pool on neovascularization and inflammation in the alkali-burned rabbit cornea. Ormerod, L.D., Garsd, A., Abelson, M.B., Kenyon, K.R. Am. J. Pathol. (1990) [Pubmed]
  27. Novel n-3 Fatty Acid Oxidation Products Activate Nrf2 by Destabilizing the Association between Keap1 and Cullin3. Gao, L., Wang, J., Sekhar, K.R., Yin, H., Yared, N.F., Schneider, S.N., Sasi, S., Dalton, T.P., Anderson, M.E., Chan, J.Y., Morrow, J.D., Freeman, M.L. J. Biol. Chem. (2007) [Pubmed]
  28. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE(2) synthesis and cytotoxicity in human colorectal carcinoma cell lines. Dommels, Y.E., Haring, M.M., Keestra, N.G., Alink, G.M., van Bladeren, P.J., van Ommen, B. Carcinogenesis (2003) [Pubmed]
  29. Role of omega-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brain-metastatic melanoma. Denkins, Y., Kempf, D., Ferniz, M., Nileshwar, S., Marchetti, D. J. Lipid Res. (2005) [Pubmed]
  30. Different effects of n-6 and n-3 polyunsaturated fatty acids on the activation of rat smooth muscle cells by interleukin-1 beta. Bousserouel, S., Brouillet, A., Béréziat, G., Raymondjean, M., Andréani, M. J. Lipid Res. (2003) [Pubmed]
  31. Influences of dietary omega-3 polyunsaturated fatty acids on the recovery of cardiac and renal functions after preservation in hyperlipidemic rats. Ku, K., Oku, H., Alam, M.S., Iwasaki, S., Xu, G., Nosaka, S., Saitoh, Y., Hanada, T., Nakayama, K. Transplantation (1997) [Pubmed]
  32. (n-3) Polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes in vitro. Hughes, D.A., Southon, S., Pinder, A.C. J. Nutr. (1996) [Pubmed]
  33. Omega-3 Fatty Acid effect on alveolar bone loss in rats. Kesavalu, L., Vasudevan, B., Raghu, B., Browning, E., Dawson, D., Novak, J.M., Correll, M.C., Steffen, M.J., Bhattacharya, A., Fernandes, G., Ebersole, J.L. J. Dent. Res. (2006) [Pubmed]
 
WikiGenes - Universities