The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats.

1. Magnesium (Mg)-deficient rats develop a mechanical hyperalgesia which is reversed by a N-Methyl-D-Aspartate (NMDA) receptor antagonist. Given that functioning of this receptor-channel is modulated by Mg, we wondered whether facilitated activation of NMDA receptors in Mg deficiency state may in turn trigger a cascade of specific intracellular events present in persistent pain. Hence, we tested several antagonists of NMDA and non-NMDA receptors as well as compounds interfering with the functioning of intracellular second messengers for effects on hyperalgesia in Mg-deficient rats. 2. Hyperalgesic Mg-deficient rats were administered intrathecally (10 microl) or intraperitoneally with different antagonists. After drug injection, pain sensitivity was evaluated by assessing the vocalization threshold in response to a mechanical stimulus (paw pressure test) over 2 h. 3. Intrathecal administration of MgSO4 (1.6, 3.2, 4.8, 6.6 micromol) as well as NMDA receptor antagonists such as MK-801 (0.6, 6.0, 60 nmol), AP-5 (10.2, 40.6, 162.3 nmol) and DCKA (0.97, 9.7, 97 nmol) dose-dependently reversed the hyperalgesia. Chelerythrine chloride, a protein kinase C (PKC) inhibitor (1, 10.4, 104.2 nmol) and 7-NI, a specific nitric oxide (NO) synthase inhibitor (37.5, 75, 150 micromol x kg(-1), i.p.) induced an anti-hyperalgesic effect in a dose-dependent manner. SR-140333 (0.15, 1.5, 15 nmol) and SR-48968 (0.17, 1.7, 17 nmol), antagonists of neurokinin receptors, produced a significant, but moderate, increase in vocalization threshold. 4. These results demonstrate that Mg-deficiency induces a sensitization of nociceptive pathways in the spinal cord which involves NMDA and non-NMDA receptors. Furthermore, the data is consistent with an active role of PKC, NO and, to a lesser extent substance P in the intracellular mechanisms leading to hyperalgesia.[1]

References

  1. Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats. Begon, S., Pickering, G., Eschalier, A., Mazur, A., Rayssiguier, Y., Dubray, C. Br. J. Pharmacol. (2001) [Pubmed]
 
WikiGenes - Universities