The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma.

The SNAP-25 deficient mouse mutant coloboma (Cm/+) is an animal model for investigating the biochemical basis of locomotor hyperactivity. The spontaneous hyperactivity exhibited by coloboma is three times greater than control mice and is a direct result of the SNAP-25 deletion. SNAP-25 is a presynaptic protein that regulates exocytotic neurotransmitter release; coloboma mice express only 50% of normal protein concentrations. Previous research has determined that there is an increase in the concentration of norepinephrine but a decrease in dopamine utilization in the striatum and nucleus accumbens of coloboma mice. In situ hybridization analysis revealed that there were corresponding increases in tyrosine hydroxylase ( TH) mRNA expression in noradrenergic cell bodies of the locus coeruleus of Cm/+ mice. In contrast, TH mRNA expression in substantia nigra appeared normal in the mutant mouse. alpha(2)-Adrenergic receptors are important modulators of central noradrenergic function and dopamine release. In situ hybridization data revealed that alpha(2A)-adrenergic receptor mRNA expression is upregulated in Cm/+ mice. These results suggest an underlying abnormality in noradrenergic regulation in this hyperactive mouse mutant.[1]


  1. Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. Jones, M.D., Williams, M.E., Hess, E.J. Brain Res. Mol. Brain Res. (2001) [Pubmed]
WikiGenes - Universities