The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Locus Coeruleus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Locus Coeruleus

 

Psychiatry related information on Locus Coeruleus

 

High impact information on Locus Coeruleus

 

Chemical compound and disease context of Locus Coeruleus

 

Biological context of Locus Coeruleus

 

Anatomical context of Locus Coeruleus

 

Associations of Locus Coeruleus with chemical compounds

 

Gene context of Locus Coeruleus

 

Analytical, diagnostic and therapeutic context of Locus Coeruleus

References

  1. Responsiveness of locus ceruleus neurons in hypertensive rats to vasopressin. Berecek, K.H., Olpe, H.R., Hofbauer, K.G. Hypertension (1987) [Pubmed]
  2. Parkinson's disease and dementia: norepinephrine and dopamine in locus ceruleus. Cash, R., Dennis, T., L'Heureux, R., Raisman, R., Javoy-Agid, F., Scatton, B. Neurology (1987) [Pubmed]
  3. Heterogeneity of angiotensin II AT2 receptors in the rat brain. Tsutsumi, K., Saavedra, J.M. Mol. Pharmacol. (1992) [Pubmed]
  4. Free fatty acids and energy metabolites in ischemic cerebral cortex with noradrenaline depletion. Yoshida, S., Harik, S.I., Busto, R., Santiso, M., Martinez, E., Ginsberg, M.D. J. Neurochem. (1984) [Pubmed]
  5. Elevated tyrosine hydroxylase in the locus coeruleus of suicide victims. Ordway, G.A., Smith, K.S., Haycock, J.W. J. Neurochem. (1994) [Pubmed]
  6. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Bouret, S., Sara, S.J. Trends Neurosci. (2005) [Pubmed]
  7. Effects of Alzheimer's disease severity on cerebrospinal fluid norepinephrine concentration. Elrod, R., Peskind, E.R., DiGiacomo, L., Brodkin, K.I., Veith, R.C., Raskind, M.A. The American journal of psychiatry. (1997) [Pubmed]
  8. Upregulation of galanin binding sites and GalR1 mRNA levels in the mouse locus coeruleus following chronic morphine treatments and precipitated morphine withdrawal. Zachariou, V., Thome, J., Parikh, K., Picciotto, M.R. Neuropsychopharmacology (2000) [Pubmed]
  9. Effects of catecholamine depleting drugs and d-amphetamine on self-stimulation of the substantia nigra and locus coeruleus. Cooper, B.R., Konkol, R.J., Breese, G.R. J. Pharmacol. Exp. Ther. (1978) [Pubmed]
  10. Interactions between cholinergic and GABAergic neurotransmitters in and around the locus coeruleus for the induction and maintenance of rapid eye movement sleep in rats. Mallick, B.N., Kaur, S., Saxena, R.N. Neuroscience (2001) [Pubmed]
  11. Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo. Arenas, E., Persson, H. Nature (1994) [Pubmed]
  12. Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Fariñas, I., Jones, K.R., Backus, C., Wang, X.Y., Reichardt, L.F. Nature (1994) [Pubmed]
  13. Interaction between neuropeptide Y and noradrenaline on central catecholamine neurons. Illes, P., Regenold, J.T. Nature (1990) [Pubmed]
  14. Somatostatin immunoreactivity in neuritic plaques of Alzheimer's patients. Morrison, J.H., Rogers, J., Scherr, S., Benoit, R., Bloom, F.E. Nature (1985) [Pubmed]
  15. A single gene error of noradrenergic axon growth synchronizes central neurones. Noebels, J.L. Nature (1984) [Pubmed]
  16. Dissociation of locus coeruleus activity and blood pressure. Effects of clonidine and corticotropin-releasing factor. Valentino, R.J., Martin, D.L., Suzuki, M. Neuropharmacology (1986) [Pubmed]
  17. Effect of gene transfer of GLT-1, a glutamate transporter, into the locus coeruleus by recombinant adenoviruses on morphine physical dependence in rats. Ozawa, T., Nakagawa, T., Sekiya, Y., Minami, M., Satoh, M. Eur. J. Neurosci. (2004) [Pubmed]
  18. Chronic coadministration of olanzapine and fluoxetine activates locus coeruleus neurons in rats: implications for bipolar disorder. Seager, M.A., Barth, V.N., Phebus, L.A., Rasmussen, K. Psychopharmacology (Berl.) (2005) [Pubmed]
  19. alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Aghajanian, G.K., VanderMaelen, C.P. Science (1982) [Pubmed]
  20. Nitric oxide (NO) modulates the neurogenic control of blood pressure in rats with chronic renal failure (CRF). Ye, S., Nosrati, S., Campese, V.M. J. Clin. Invest. (1997) [Pubmed]
  21. The neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal. Zachariou, V., Brunzell, D.H., Hawes, J., Stedman, D.R., Bartfai, T., Steiner, R.A., Wynick, D., Langel, U., Picciotto, M.R. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  22. Imprinted Nesp55 influences behavioral reactivity to novel environments. Plagge, A., Isles, A.R., Gordon, E., Humby, T., Dean, W., Gritsch, S., Fischer-Colbrie, R., Wilkinson, L.S., Kelsey, G. Mol. Cell. Biol. (2005) [Pubmed]
  23. Opiate- and alpha 2-adrenoceptor-induced hyperpolarizations of locus ceruleus neurons in brain slices: reversal by cyclic adenosine 3':5'-monophosphate analogues. Andrade, R., Aghajanian, G.K. J. Neurosci. (1985) [Pubmed]
  24. Autoradiographic distribution of substance P receptors in rat central nervous system. Quirion, R., Shults, C.W., Moody, T.W., Pert, C.B., Chase, T.N., O'Donohue, T.L. Nature (1983) [Pubmed]
  25. Cerebral norepinephrine: influence on cortical oxidative metabolism in situ. Harik, S.I., LaManna, J.C., Light, A.I., Rosenthal, M. Science (1979) [Pubmed]
  26. Serotonin neurons project to small blood vessels in the brain. Reinhard, J.F., Liebmann, J.E., Schlosberg, A.J., Moskowitz, M.A. Science (1979) [Pubmed]
  27. Catecholamine enzymes in the degenerative neurological disease idiopathic orthostatic hypotension. Black, I.B., Petito, C.K. Science (1976) [Pubmed]
  28. Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization. Berod, A., Biguet, N.F., Dumas, S., Bloch, B., Mallet, J. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  29. Modulation of lateral geniculate neurone excitability by noradrenaline microiontophoresis or locus coeruleus stimulation. Rogawski, M.A., Aghajanian, G.K. Nature (1980) [Pubmed]
  30. Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Aghajanian, G.K. Nature (1978) [Pubmed]
  31. Activity and distribution of binding sites in brain of a nonpeptide substance P (NK1) receptor antagonist. McLean, S., Ganong, A.H., Seeger, T.F., Bryce, D.K., Pratt, K.G., Reynolds, L.S., Siok, C.J., Lowe, J.A., Heym, J. Science (1991) [Pubmed]
  32. Excitatory amino acids: function and significance in reproduction and neuroendocrine regulation. Brann, D.W., Mahesh, V.B. Frontiers in neuroendocrinology. (1994) [Pubmed]
  33. Abnormal development of the locus coeruleus in Ear2(Nr2f6)-deficient mice impairs the functionality of the forebrain clock and affects nociception. Warnecke, M., Oster, H., Revelli, J.P., Alvarez-Bolado, G., Eichele, G. Genes Dev. (2005) [Pubmed]
  34. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Xu, Y.L., Reinscheid, R.K., Huitron-Resendiz, S., Clark, S.D., Wang, Z., Lin, S.H., Brucher, F.A., Zeng, J., Ly, N.K., Henriksen, S.J., de Lecea, L., Civelli, O. Neuron (2004) [Pubmed]
  35. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Reyes, T.M., Lewis, K., Perrin, M.H., Kunitake, K.S., Vaughan, J., Arias, C.A., Hogenesch, J.B., Gulyas, J., Rivier, J., Vale, W.W., Sawchenko, P.E. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  36. Evidence for retrograde degeneration of epinephrine neurons in Alzheimer's disease. Burke, W.J., Chung, H.D., Huang, J.S., Huang, S.S., Haring, J.H., Strong, R., Marshall, G.L., Joh, T.H. Ann. Neurol. (1988) [Pubmed]
  37. Crucial role of TrkB ligands in the survival and phenotypic differentiation of developing locus coeruleus noradrenergic neurons. Holm, P.C., Rodríguez, F.J., Kresse, A., Canals, J.M., Silos-Santiago, I., Arenas, E. Development (2003) [Pubmed]
  38. Ultrastructural localization of tyrosine hydroxylase in noradrenergic neurons of brain. Pickel, V.M., Joh, T.H., Reis, D.J. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  39. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. Lin, J.S., Hou, Y., Sakai, K., Jouvet, M. J. Neurosci. (1996) [Pubmed]
  40. Cerebral compensation for chronic noradrenergic denervation induced by locus ceruleus lesion: recovery of receptor binding, isoproterenol-induced adenylate cyclase activity, and oxidative metabolism. Harik, S.I., Duckrow, R.B., LaManna, J.C., Rosenthal, M., Sharma, V.K., Banerjee, S.P. J. Neurosci. (1981) [Pubmed]
  41. Modulation of forebrain electroencephalographic activity in halothane-anesthetized rat via actions of noradrenergic beta-receptors within the medial septal region. Berridge, C.W., Bolen, S.J., Manley, M.S., Foote, S.L. J. Neurosci. (1996) [Pubmed]
  42. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Kask, A., Harro, J., von Hörsten, S., Redrobe, J.P., Dumont, Y., Quirion, R. Neuroscience and biobehavioral reviews. (2002) [Pubmed]
 
WikiGenes - Universities