The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of carboxyethylphosphoramide mustard formation from 4-hydroxycyclophosphamide by carmustine.

It has been reported that the toxicity of carmustine (BCNU)/cyclophosphamide (CY)/etoposide regimen (when BCNU is split into 4 doses) is less than that of BCNU/CY/cisplatin regimen (when the same amount of BCNU is administered as a single dose). We hypothesized that this might in part be due to the inhibition of aldehyde dehydrogenase 1 (ALDH1) by BCNU or its degradation product, 2-chloroethyl isocyanate, which is likely to be more pronounced at the higher BCNU dose. The effects of BCNU and 2-chloroethyl isocyanate on the formation of carboxyethylphosphoramide mustard (CEPM) from 4-hydroxycyclophosphamide (HCY) was evaluated in human liver cytosol incubations. We found that CEPM formation from HCY was inhibited strongly by BCNU and weakly by 2-chloroethyl isocyanate. The mechanism of inhibition of ALDH1 activity by BCNU was elucidated using indole-3-acetaldehyde (IAL) as the probe substrate in ALDH1 prepared from human erythrocytes. BCNU was a competitive inhibitor of ALDH1 activity with a K(i) of 1.95 microM. The inhibition was independent of preincubation time and reversible by dialysis. The calculated %inhibition of ALDH1 activity by acrolein and BCNU in patients receiving BCNU in 4 split doses with CY was 81%, and it increased to 92% in single dose BCNU regimen. Thus, the calculation indicates that residual operating ALDH1 activity is halved in the presence of single-dose BCNU compared to split-dose BCNU. The inhibition of ALDH1 may contribute to the observed lower incidence of toxicity when BCNU was split into 4 doses compared with single dose and coadministered with CY although dose-dependent effects of BCNU on glutathione and glutathione reductase are also likely to contribute.[1]

References

 
WikiGenes - Universities