The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

GSR  -  glutathione reductase

Homo sapiens

Synonyms: GLUR, GR, GRD1, GRase, Glutathione reductase, mitochondrial
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of GSR

 

Psychiatry related information on GSR

 

High impact information on GSR

 

Chemical compound and disease context of GSR

 

Biological context of GSR

 

Anatomical context of GSR

 

Associations of GSR with chemical compounds

 

Physical interactions of GSR

  • GSHPx coupled to reduced nicotine adenine diphosphate (NADPH) regenerating systems via glutathione reductase is virtually able to guarantee an effective protection of biological structures against oxidative attack (22) [34].
  • The topologies and spatial arrangements of these two domains are remarkably similar to the FAD- and NADPH-binding domains of glutathione reductase [35].
 

Enzymatic interactions of GSR

 

Regulatory relationships of GSR

 

Other interactions of GSR

  • We show that three of the markers examined--D8S339 and both polymorphisms in the GSR locus--show strong statistically significant evidence of disequilibrium with WRN in the Japanese population but not in the Caucasian population [22].
  • No differences in levels of glutathione, catalase, superoxide dismutase, glutathione S-transferase, or glutathione reductase were noted in MCF-GPX-6 cells compared to MCF-7WT cells [43].
  • The enzyme activities of the three permanent cell lines were either higher (SOD, catalase, GR) or lower (GST, GPx) than in the primary cell cultures [25].
  • In order to estimate the ability of the cultures to produce NADPH (an important component of cellular redox status and a cofactor for GR), we determined glucose-6-phosphate dehydrogenase activity and mRNA abundance [44].
  • One hour photolysis of the human lens WS fraction under anaerobic conditions yielded an almost complete inactivation of GR, but only an 18% loss of G3PD activity [45].
 

Analytical, diagnostic and therapeutic context of GSR

References

  1. Glutathione and association antioxidant systems in protein energy malnutrition: results of a study in Nigeria. Becker, K., Leichsenring, M., Gana, L., Bremer, H.J., Schirmer, R.H. Free Radic. Biol. Med. (1995) [Pubmed]
  2. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Massi, P., Vaccani, A., Bianchessi, S., Costa, B., Macchi, P., Parolaro, D. Cell. Mol. Life Sci. (2006) [Pubmed]
  3. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity. Stoll, V.S., Simpson, S.J., Krauth-Siegel, R.L., Walsh, C.T., Pai, E.F. Biochemistry (1997) [Pubmed]
  4. Study of tobacco habits and alterations in enzymatic antioxidant system in oral cancer. Patel, B.P., Rawal, U.M., Shah, P.M., Prajapati, J.A., Rawal, R.M., Dave, T.K., Patel, P.S. Oncology (2005) [Pubmed]
  5. Decreased redox state in red blood cells from patients with sarcoidosis. Rothkrantz-Kos, S., Drent, M., Vuil, H., De Boer, M., Bast, A., Wouters, E.F., Roos, D., van Dieijen-Visser, M.P. Sarcoidosis, vasculitis, and diffuse lung diseases : official journal of WASOG / World Association of Sarcoidosis and Other Granulomatous Disorders. (2002) [Pubmed]
  6. Antioxidant enzymes and lipid peroxides in children with cerebral palsy. Kulak, W., Sobaniec, W., Solowej, E., Sobaniec, H. Life Sci. (2005) [Pubmed]
  7. Oxidative stress in Rett syndrome. Sierra, C., Vilaseca, M.A., Brandi, N., Artuch, R., Mira, A., Nieto, M., Pineda, M. Brain Dev. (2001) [Pubmed]
  8. The activity of the pentose phosphate pathway is increased in response to oxidative stress in Alzheimer's disease. Palmer, A.M. Journal of neural transmission (Vienna, Austria : 1996) (1999) [Pubmed]
  9. Marijuana influenced changes in GSR activation peaking during paired-associate learning. Cohen, M.J., Rickles, W.H., Naliboff, B.D. Pharmacol. Biochem. Behav. (1975) [Pubmed]
  10. Effects of biofeedback-aided relaxation on the psychological stress symptoms of college students. Fehring, R.J. Nursing research. (1983) [Pubmed]
  11. Convergent evolution of similar function in two structurally divergent enzymes. Kuriyan, J., Krishna, T.S., Wong, L., Guenther, B., Pahler, A., Williams, C.H., Model, P. Nature (1991) [Pubmed]
  12. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Schiering, N., Kabsch, W., Moore, M.J., Distefano, M.D., Walsh, C.T., Pai, E.F. Nature (1991) [Pubmed]
  13. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Scrutton, N.S., Berry, A., Perham, R.N. Nature (1990) [Pubmed]
  14. The structure of the flavoenzyme glutathione reductase. Schulz, G.E., Schirmer, R.H., Sachsenheimer, W., Pai, E.F. Nature (1978) [Pubmed]
  15. The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Chen, Z.W., Koh, M., Van Driessche, G., Van Beeumen, J.J., Bartsch, R.G., Meyer, T.E., Cusanovich, M.A., Mathews, F.S. Science (1994) [Pubmed]
  16. Glutathione reductase and nitroblue tetrazolium reduction deficiencies in neutrophils of patients with primary idiopathic myelofibrosis. Perianin, A., Labro-Bryskier, M.T., Marquetty, C., Hakim, J. Clin. Exp. Immunol. (1984) [Pubmed]
  17. Blood micronutrient, oxidative stress, and viral load in patients with chronic hepatitis C. Ko, W.S., Guo, C.H., Yeh, M.S., Lin, L.Y., Hsu, G.S., Chen, P.C., Luo, M.C., Lin, C.Y. World J. Gastroenterol. (2005) [Pubmed]
  18. Catalase, superoxide dismutase, glutathione reductase and thiobarbituric acid-reactive products in normal and dystrophic human muscle. Kar, N.C., Pearson, C.M. Clin. Chim. Acta (1979) [Pubmed]
  19. Opposite regulation of tyrosinase and glutathione peroxidase by intracellular thiols in human melanoma cells. Benathan, M. Arch. Dermatol. Res. (1997) [Pubmed]
  20. A YAC, P1, and cosmid contig and 17 new polymorphic markers for the Werner syndrome region at 8p12-p21. Yu, C.E., Oshima, J., Hisama, F.M., Matthews, S., Trask, B.J., Schellenberg, G.D. Genomics (1996) [Pubmed]
  21. Erythrocyte glutathione reductase polymorphism in a Sudanese population. Saha, N. Hum. Hered. (1981) [Pubmed]
  22. Linkage disequilibrium and haplotype studies of chromosome 8p 11.1-21.1 markers and Werner syndrome. Yu, C.E., Oshima, J., Goddard, K.A., Miki, T., Nakura, J., Ogihara, T., Poot, M., Hoehn, H., Fraccaro, M., Piussan, C. Am. J. Hum. Genet. (1994) [Pubmed]
  23. Physiological oxidative stress model: Syrian hamster Harderian gland-sex differences in antioxidant enzymes. Coto-Montes, A., Boga, J.A., Tomás-Zapico, C., Rodríguez-Colunga, M.J., Martínez-Fraga, J., Tolivia-Cadrecha, D., Menéndez, G., Hardeland, R., Tolivia, D. Free Radic. Biol. Med. (2001) [Pubmed]
  24. Selective and irreversible inhibition of glutathione reductase in vitro by carbamate thioester conjugates of methyl isocyanate. Jochheim, C.M., Baillie, T.A. Biochem. Pharmacol. (1994) [Pubmed]
  25. Antioxidant enzymes in malignant prostate cell lines and in primary cultured prostatic cells. Jung, K., Seidel, B., Rudolph, B., Lein, M., Cronauer, M.V., Henke, W., Hampel, G., Schnorr, D., Loening, S.A. Free Radic. Biol. Med. (1997) [Pubmed]
  26. Catalase and glutathione reductase protection of human alveolar macrophages during oxidant exposure in vitro. Pietarinen, P., Raivio, K., Devlin, R.B., Crapo, J.D., Chang, L.Y., Kinnula, V.L. Am. J. Respir. Cell Mol. Biol. (1995) [Pubmed]
  27. Chromium(VI)-induced nuclear factor-kappa B activation in intact cells via free radical reactions. Ye, J., Zhang, X., Young, H.A., Mao, Y., Shi, X. Carcinogenesis (1995) [Pubmed]
  28. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. Shindo, Y., Witt, E., Han, D., Epstein, W., Packer, L. J. Invest. Dermatol. (1994) [Pubmed]
  29. Oxidized LDL induces a coordinated up-regulation of the glutathione and thioredoxin systems in human macrophages. Hägg, D., Englund, M.C., Jernås, M., Schmidt, C., Wiklund, O., Hultén, L.M., Ohlsson, B.G., Carlsson, L.M., Carlsson, B., Svensson, P.A. Atherosclerosis (2006) [Pubmed]
  30. Modifications of the anti-oxidant metabolism during proliferation and differentiation of colon tumor cell lines. Bravard, A., Beaumatin, J., Dussaulx, E., Lesuffleur, T., Zweibaum, A., Luccioni, C. Int. J. Cancer (1994) [Pubmed]
  31. Vitamin D is a prooxidant in breast cancer cells. Koren, R., Hadari-Naor, I., Zuck, E., Rotem, C., Liberman, U.A., Ravid, A. Cancer Res. (2001) [Pubmed]
  32. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Carlo, M.D., Loeser, R.F. Arthritis Rheum. (2003) [Pubmed]
  33. Simultaneous induction of sod, glutathione reductase, GSH, and ascorbate in liver and kidney correlates with survival during aging. López-Torres, M., Pérez-Campo, R., Rojas, C., Cadenas, S., Barja, G. Free Radic. Biol. Med. (1993) [Pubmed]
  34. Sudden infant death syndrome: oxidative stress. Reid, G.M., Tervit, H. Med. Hypotheses (1999) [Pubmed]
  35. Three-dimensional structure of the iron-sulfur flavoprotein trimethylamine dehydrogenase at 2.4-A resolution. Lim, L.W., Shamala, N., Mathews, F.S., Steenkamp, D.J., Hamlin, R., Xuong, N.H. J. Biol. Chem. (1986) [Pubmed]
  36. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Arnér, E.S., Nordberg, J., Holmgren, A. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  37. The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates. Pai, E.F., Schulz, G.E. J. Biol. Chem. (1983) [Pubmed]
  38. Effect of aldose reductase inhibition on glutathione redox status in erythrocytes of diabetic patients. De Mattia, G., Laurenti, O., Bravi, C., Ghiselli, A., Iuliano, L., Balsano, F. Metab. Clin. Exp. (1994) [Pubmed]
  39. A high-sensitivity, single-gel, polyacrylamide gel electrophoresis method for the quantitative determination of glutathione reductases. Ye, B., Gitler, C., Gressel, J. Anal. Biochem. (1997) [Pubmed]
  40. The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. Kuzniak, E., Skłodowska, M. J. Exp. Bot. (2004) [Pubmed]
  41. Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase. Nordman, T., Xia, L., Björkhem-Bergman, L., Damdimopoulos, A., Nalvarte, I., Arnér, E.S., Spyrou, G., Eriksson, L.C., Björnstedt, M., Olsson, J.M. Biofactors (2003) [Pubmed]
  42. Antagonistic effects of pyrrolidine dithiocarbamate and N-acetyl-L-cysteine on surfactant protein A and B mRNAs. Khalak, R., Huyck, H.L., Pryhuber, G.S. Exp. Lung Res. (1999) [Pubmed]
  43. Enhanced glutathione peroxidase expression protects cells from hydroperoxides but not from radiation or doxorubicin. Liebmann, J., Fisher, J., Lipschultz, C., Kuno, R., Kaufman, D.C. Cancer Res. (1995) [Pubmed]
  44. Expression of hydrogen peroxide and glutathione metabolizing enzymes in human skin fibroblasts derived from donors of different ages. Keogh, B.P., Allen, R.G., Pignolo, R., Horton, J., Tresini, M., Cristofalo, V.J. J. Cell. Physiol. (1996) [Pubmed]
  45. Effect of UVA light on the activity of several aged human lens enzymes. Linetsky, M., Chemoganskiy, V.G., Hu, F., Ortwerth, B.J. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  46. Glutathione reductase and glutamate dehydrogenase of Plasmodium falciparum, the causative agent of tropical malaria. Krauth-Siegel, R.L., Müller, J.G., Lottspeich, F., Schirmer, R.H. Eur. J. Biochem. (1996) [Pubmed]
  47. Alterations in anti-oxidative defence enzymes in erythrocytes from sporadic amyotrophic lateral sclerosis (SALS) and familial ALS patients. Nikolić-Kokić, A., Stević, Z., Blagojević, D., Davidović, B., Jones, D.R., Spasić, M.B. Clin. Chem. Lab. Med. (2006) [Pubmed]
  48. Changes of antioxidant enzyme activities during cardiopulmonary bypass. Inal, M., Alataş, O., Kanbak, G., Akyüz, F., Sevin, B. The Journal of cardiovascular surgery. (1999) [Pubmed]
  49. Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain. Krauth-Siegel, R.L., Blatterspiel, R., Saleh, M., Schiltz, E., Schirmer, R.H., Untucht-Grau, R. Eur. J. Biochem. (1982) [Pubmed]
  50. Redox capacity of cells affects inactivation of glutathione reductase by nitrosative stress. Fujii, T., Hamaoka, R., Fujii, J., Taniguchi, N. Arch. Biochem. Biophys. (2000) [Pubmed]
 
WikiGenes - Universities