Influence of antioxidants on the blood-brain barrier permeability during epileptic seizures.
Pentylenetetrazol-induced seizures in rats lead to the breakdown of the blood-brain barrier. We compared the disruption of the blood-brain barrier during epileptic seizure in untreated rats and in rats treated with vitamin E or selenium. The rats were supplemented with nontoxic doses of sodium selenite (4 pp) in drinking water for 3 months, or vitamin E (70 mg/kg) was given intraperitoneally for 30 min before the pentylenetetrazole injection. Evans-blue was used as a blood-brain barrier tracer and was given intravenously at a dose of 4 ml/kg of a 2% solution. The rats were divided into four experimental groups. Group I: control (n = 24); Group II: pentylenetetrazole-induced seizure (n = 12); Group III: vitamin E injected + seizure (n = 12); Group IV: Selenium supplemented + seizure (n = 12). The rats subjected to epileptic seizures showed Evans-blue albumin extravasations especially in the thalamic nuclei, brainstem, occipital, and frontal cortex. Mean values for Evans-blue dye were found to be 0.28 +/- 0.04 mg % brain tissue in control rats and 1.6 +/- 0.2 mg % brain tissue after epileptic seizures (P < 0.01). The magnitude of distribution of the blood-brain barrier during epileptic seizures was significantly less in rats treated with vitamin E or selenium. The mean value for Evans-blue dye was found to be 1.2 +/- 0.1 mg % brain tissue in selenium supplemented rats and 1.2 +/- 0.1 mg % brain tissue in vitamin E injected rats after epileptic seizures. This difference between treated and untreated animals was found to be significant (P < 0.05). The findings of the present study suggest that free radicals contribute to disruption of the blood-brain barrier during pentylenetetrazol-induced seizures.[1]References
- Influence of antioxidants on the blood-brain barrier permeability during epileptic seizures. Oztaş, B., Kiliç, S., Dural, E., Ispir, T. J. Neurosci. Res. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg