The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Thalamic Nuclei

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Thalamic Nuclei


Psychiatry related information on Thalamic Nuclei


High impact information on Thalamic Nuclei


Chemical compound and disease context of Thalamic Nuclei


Biological context of Thalamic Nuclei


Anatomical context of Thalamic Nuclei

  • To test this hypothesis, bilateral electrolytic or excitotoxic ibotenic acid MG nuclear lesions were induced, and multiunit recording electrodes were chronically implanted into the anterior and posterior cingulate cortex, the anterior-ventral and medial-dorsal thalamic nuclei, and the basolateral nucleus of the amygdala before training [20].
  • In each case of status type I, II, or III, the same anatomical structures that displayed high levels of 14C-2-deoxyglucose uptake also contained many cells that were immunoreactive for Fos, with the exception of the parataenial and mediodorsal thalamic nuclei and the substantia nigra pars reticularis [21].
  • NCKX3 transcripts were most abundant in brain, with highest levels found in selected thalamic nuclei, in hippocampal CA1 neurons, and in layer IV of the cerebral cortex [22].
  • In situ hybridization revealed high level, focal expression of 4.1B mRNA in select neuronal populations within the mouse brain, including Purkinje cells of the cerebellum, pyramidal cells in hippocampal regions CA1-3, thalamic nuclei, and olfactory bulb [23].
  • In contrast, reactive astrocytes in the thalamic nuclei never expressed vimentin, and displayed an enlarged cell body with thick shortened processes [24].

Associations of Thalamic Nuclei with chemical compounds

  • Although muscimol alone did not significantly affect LCGU in the external plexiform layer of the olfactory bulb or the anterior, periventricular, and parafascicular thalamic nuclei, rats treated with 0.4 mg/kg of scopolamine before 4.0 mg/kg of muscimol had LCGU decrements in those brain regions [25].
  • The slow rhythm survived extensive ipsilateral thalamic destruction by means of electrolytic lesions or kainate-induced loss of perikarya in thalamic nuclei that were input sources to the recorded cortical neurons [26].
  • Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia [27].
  • Alterations in local cerebral glucose utilisation in specific thalamic nuclei following apomorphine [28].
  • We investigated both alphaBGT and nicotine binding autoradiographically in different thalamic nuclei in autopsy brain tissue from patients with schizophrenia and DLB [29].

Gene context of Thalamic Nuclei

  • Stimulation of mAChRs induced CYR61 expression in primary neurons and rat brain where CYR61 mRNA was detected in cortical layers V and VI and in thalamic nuclei [30].
  • METHOD: N-Methyl-D-aspartate (NMDA), AMPA, and kainate receptor expression was determined in six thalamic nuclei from 12 subjects with DSM-III-R diagnoses of schizophrenia and eight psychiatrically normal individuals [27].
  • In contrast, CB immunoreactivity is prevalent in medial thalamic nuclei (intralaminar and midline), the posterior complex, ventral posterior inferior nucleus, the ventral lateral anterior nucleus, ventral anterior, and ventral medial nuclei [31].
  • Furthermore, BuChE activity, like AChE activity, is found in certain thalamic nuclei related to cognitive and behavioral functions [6].
  • By comparison, the striatum and reticular and ventral posterolateral thalamic nuclei, which all showed synaptogyrin 1 labeling, contained significantly less synaptogyrin 3 [32].

Analytical, diagnostic and therapeutic context of Thalamic Nuclei


  1. GABAB receptor-mediated effects in synaptosomes of lethargic (lh/lh) mice. Lin, F.H., Wang, Y., Lin, S., Cao, Z., Hosford, D.A. J. Neurochem. (1995) [Pubmed]
  2. Influence of antioxidants on the blood-brain barrier permeability during epileptic seizures. Oztaş, B., Kiliç, S., Dural, E., Ispir, T. J. Neurosci. Res. (2001) [Pubmed]
  3. GABAergic circuitry in the dorsal division of the cat medial geniculate nucleus. Coomes, D.L., Bickford, M.E., Schofield, B.R. J. Comp. Neurol. (2002) [Pubmed]
  4. Secondary hypoxemia exacerbates the reduction of visual discrimination accuracy and neuronal cell density in the dorsal lateral geniculate nucleus resulting from fluid percussion injury. Bauman, R.A., Widholm, J.J., Petras, J.M., McBride, K., Long, J.B. J. Neurotrauma (2000) [Pubmed]
  5. Neurosurgical interventions in the treatment of idiopathic Parkinson disease: neurostimulation and neural implantation. Kupsch, A., Earl, C. J. Mol. Med. (1999) [Pubmed]
  6. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. Darvesh, S., Hopkins, D.A. J. Comp. Neurol. (2003) [Pubmed]
  7. Efficient internal pallidal stimulation in Gilles de la Tourette syndrome: a case report. Diederich, N.J., Kalteis, K., Stamenkovic, M., Pieri, V., Alesch, F. Mov. Disord. (2005) [Pubmed]
  8. Ciliary neurotrophic factor prevents retrograde neuronal death in the adult central nervous system. Clatterbuck, R.E., Price, D.L., Koliatsos, V.E. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  9. Deficits in human visual spatial attention following thalamic lesions. Rafal, R.D., Posner, M.I. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  10. Conservation of expression of neuropeptide Y5 receptor between human and rat hypothalamus and limbic regions suggests an integral role in central neuroendocrine control. Nichol, K.A., Morey, A., Couzens, M.H., Shine, J., Herzog, H., Cunningham, A.M. J. Neurosci. (1999) [Pubmed]
  11. Distribution of the mRNAs encoding torsinA and torsinB in the normal adult human brain. Augood, S.J., Martin, D.M., Ozelius, L.J., Breakefield, X.O., Penney, J.B., Standaert, D.G. Ann. Neurol. (1999) [Pubmed]
  12. Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. Trupp, M., Belluardo, N., Funakoshi, H., Ibáñez, C.F. J. Neurosci. (1997) [Pubmed]
  13. Neurochemical changes after morphine, dizocilpine or riluzole in the ventral posterolateral thalamic nuclei of rats with hyperalgesia. Abarca, C., Silva, E., Sepúlveda, M.J., Oliva, P., Contreras, E. Eur. J. Pharmacol. (2000) [Pubmed]
  14. L-ephedrine-induced neurodegeneration in the parietal cortex and thalamus of the rat is dependent on hyperthermia and can be altered by the process of in vivo brain microdialysis. Bowyer, J.F., Hopkins, K.J., Jakab, R., Ferguson, S.A. Toxicol. Lett. (2001) [Pubmed]
  15. The contribution of the lateral posterior and anteroventral thalamic nuclei on spontaneous recurrent seizures in the pilocarpine model of epilepsy. Scorza, F.A., Arida, R.M., Priel, M., Calderazzo, L., Cavalheiro, E.A. Arquivos de neuro-psiquiatria. (2002) [Pubmed]
  16. Identification and characterization of two G protein-coupled receptors for neuropeptide FF. Bonini, J.A., Jones, K.A., Adham, N., Forray, C., Artymyshyn, R., Durkin, M.M., Smith, K.E., Tamm, J.A., Boteju, L.W., Lakhlani, P.P., Raddatz, R., Yao, W.J., Ogozalek, K.L., Boyle, N., Kouranova, E.V., Quan, Y., Vaysse, P.J., Wetzel, J.M., Branchek, T.A., Gerald, C., Borowsky, B. J. Biol. Chem. (2000) [Pubmed]
  17. Connections of some auditory-responsive posterior thalamic nuclei putatively involved in activation of the hypothalamo-pituitary-adrenocortical axis in response to audiogenic stress in rats: an anterograde and retrograde tract tracing study combined with Fos expression. Campeau, S., Watson, S.J. J. Comp. Neurol. (2000) [Pubmed]
  18. Tonic activation of presynaptic GABA(B) receptors on thalamic sensory afferents. Emri, Z., Turner, J.P., Crunelli, V. Neuroscience (1996) [Pubmed]
  19. Bilateral cerebral metabolic effects of pharmacological manipulation of the substantia nigra in the rat: unilateral intranigral application of the putative excitatory neurotransmitter substance P. Dermon, C.R., Tzagournissakis, M., Savaki, H.E. Neuroscience (1992) [Pubmed]
  20. Medial geniculate lesions block amygdalar and cingulothalamic learning-related neuronal activity. Poremba, A., Gabriel, M. J. Neurosci. (1997) [Pubmed]
  21. The functional anatomy of limbic status epilepticus in the rat. I. Patterns of 14C-2-deoxyglucose uptake and Fos immunocytochemistry. White, L.E., Price, J.L. J. Neurosci. (1993) [Pubmed]
  22. Molecular cloning of a third member of the potassium-dependent sodium-calcium exchanger gene family, NCKX3. Kraev, A., Quednau, B.D., Leach, S., Li, X.F., Dong, H., Winkfein, R., Perizzolo, M., Cai, X., Yang, R., Philipson, K.D., Lytton, J. J. Biol. Chem. (2001) [Pubmed]
  23. Molecular and functional characterization of protein 4.1B, a novel member of the protein 4.1 family with high level, focal expression in brain. Parra, M., Gascard, P., Walensky, L.D., Gimm, J.A., Blackshaw, S., Chan, N., Takakuwa, Y., Berger, T., Lee, G., Chasis, J.A., Snyder, S.H., Mohandas, N., Conboy, J.G. J. Biol. Chem. (2000) [Pubmed]
  24. Regional heterogeneity in the response of astrocytes following traumatic brain injury in the adult rat. Hill, S.J., Barbarese, E., McIntosh, T.K. J. Neuropathol. Exp. Neurol. (1996) [Pubmed]
  25. Muscimol-scopolamine interactions in the rat brain: a study with 2-deoxy-D-[1-14C]glucose. Helén, P., London, E.D. J. Neurosci. (1984) [Pubmed]
  26. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Steriade, M., Nuñez, A., Amzica, F. J. Neurosci. (1993) [Pubmed]
  27. Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Ibrahim, H.M., Hogg, A.J., Healy, D.J., Haroutunian, V., Davis, K.L., Meador-Woodruff, J.H. The American journal of psychiatry. (2000) [Pubmed]
  28. Alterations in local cerebral glucose utilisation in specific thalamic nuclei following apomorphine. McCulloch, J., Kelly, P.A. J. Cereb. Blood Flow Metab. (1981) [Pubmed]
  29. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus. Court, J., Spurden, D., Lloyd, S., McKeith, I., Ballard, C., Cairns, N., Kerwin, R., Perry, R., Perry, E. J. Neurochem. (1999) [Pubmed]
  30. Muscarinic acetylcholine receptors induce the expression of the immediate early growth regulatory gene CYR61. Albrecht, C., von Der Kammer, H., Mayhaus, M., Klaudiny, J., Schweizer, M., Nitsch, R.M. J. Biol. Chem. (2000) [Pubmed]
  31. Multiarchitectonic and stereotactic atlas of the human thalamus. Morel, A., Magnin, M., Jeanmonod, D. J. Comp. Neurol. (1997) [Pubmed]
  32. Characterization of synaptogyrin 3 as a new synaptic vesicle protein. Belizaire, R., Komanduri, C., Wooten, K., Chen, M., Thaller, C., Janz, R. J. Comp. Neurol. (2004) [Pubmed]
  33. Induction of c-fos in specific thalamic nuclei following stimulation of the pedunculopontine tegmental nucleus. Ainge, J.A., Jenkins, T.A., Winn, P. Eur. J. Neurosci. (2004) [Pubmed]
  34. Substance P innervation of the rat and cat thalamus. I. Distribution and relation to ascending spinal pathways. Battaglia, G., Spreafico, R., Rustioni, A. J. Comp. Neurol. (1992) [Pubmed]
  35. Modulatory role of catecholamines in the transsynaptic expression of c-fos in the rat medial prefrontal cortex induced by disinhibition of the mediodorsal thalamus: a study employing microdialysis and immunohistochemistry. Bubser, M., Feenstra, M.G., Erdtsieck-Ernste, E.B., Botterblom, M.H., Van Uum, H.F., Pool, C.W. Brain Res. (1997) [Pubmed]
  36. Effects of atropine and mecamylamine given locally into periaqueductal gray on bioelectrical activity of chosen brain structures of the rabbit. Kowalczyk, M., Rump, S., Blinowska, K. Acta physiologica Polonica. (1989) [Pubmed]
WikiGenes - Universities