Hypothalamic and vagal neuropeptide circuitries regulating food intake.
It has been recognized for some time that a number of different neuropeptides exert powerful effects on food intake. During the last few years, the neurocircuitry within which these peptides operate has also begun to be elucidated. Peptidergic feeding-regulatory neurones are found both in the hypothalamus and the brainstem, where they act as input stations for hormonal and gastrointestinal information, respectively. These cell populations both project to several other brain regions and interconnect extensively. The present review summarizes the neuroanatomy and connectivity of some prominent peptides involved in food intake control, including neuropeptide Y, melanocortin peptides, agouti gene-related protein, cocaine- and amphetamine-regulated transcript, orexin/hypocretin, melanin-concentrating hormone and cholecystokinin. Disturbances in the hypothalamic neuropeptide systems have been implicated in the phenotype of a genetic model of fatal hypophagia, the mouse anorexia (anx) mutation, which is also discussed.[1]References
- Hypothalamic and vagal neuropeptide circuitries regulating food intake. Broberger, C., Hökfelt, T. Physiol. Behav. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg