The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Neuroanatomy

  • These findings suggest that the FMR-1 mutation causing the fragile X syndrome leads to observable changes in neuroanatomy that may be relevant to the neurodevelopmental disability and behavioural problems observed in affected individuals [1].

Psychiatry related information on Neuroanatomy

  • The functional neuroanatomy of Tourette's syndrome: an FDG-PET study. I. Regional changes in cerebral glucose metabolism differentiating patients and controls [2].
  • Postnatal exposure to ethanol that produces high-peak blood ethanol concentrations (HP-BEC) in artificially reared infant rats affects hippocampal neuroanatomy and discrimination learning based on memorial cues from a patterned (single) alternation (PA) schedule in preweanling rats (P. L. Greene, J. L. Diaz-Granados, & A. Amsel, 1992) [3].
  • The neuroanatomy of 5-HT dysregulation and panic disorder [4].
  • Assuming that the rut behavioral defect is not due to altered neuroanatomy, the data also suggest that the adenylate cyclase activity lesioned by rut is only one of the molecular processes required for acquisition and short-term memory [5].

High impact information on Neuroanatomy


Biological context of Neuroanatomy


Anatomical context of Neuroanatomy


Associations of Neuroanatomy with chemical compounds

  • Homozygous mice show large reductions in brain tissue monoamines, motor impairments, enhanced sensitivity to dopamine agonism, and changes in the chemical neuroanatomy of the striatum that are consistent with alterations in the balance of the striatonigral (direct) and striatopallidal (indirect) pathways [19].
  • This effort is consistent with the goals of the Unified Medical Language System program of the National Library of Medicine. It is hoped that the systematic construction of the NeuroNames Brain Hierarchy will facilitate use of the most widely accepted definitions of classical neuroanatomy in quantitative computerized neuroimaging applications [20].
  • Hypothalamic neuroanatomy: steroid hormone binding and patterns of axonal projections [21].
  • First, a background on the GABA system is provided, including GABA pharmacology and neuroanatomy of GABAergic neurons [22].
  • Several serotonin receptors are also prominently expressed in the striatum, but little is known about how they fit into the molecular neuroanatomy described above [23].

Gene context of Neuroanatomy

  • Adult mice generated with a mutation in Lhx5 were found to display absent or disorganized hippocampal neuroanatomy [24].
  • This review, based on a Medline search from 1980 to 2001, focuses on the functional neuroanatomy, receptor pharmacology, VP synergism with CRH, and the data from clinical and pre-clinical studies that support an important role for AVP in the pathophysiology of major depression [25].
  • FOXP2 and the neuroanatomy of speech and language [26].
  • Although the NMDA receptor has been implicated in several aspects of neurodevelopment, overall neuroanatomy of NR1-/- mice appeared normal [27].
  • The underlying neuroanatomy involves hippocampal-cortical interactions indicative of a partial epilepsy [28].

Analytical, diagnostic and therapeutic context of Neuroanatomy


  1. Neurodevelopmental effects of the FMR-1 full mutation in humans. Reiss, A.L., Abrams, M.T., Greenlaw, R., Freund, L., Denckla, M.B. Nat. Med. (1995) [Pubmed]
  2. The functional neuroanatomy of Tourette's syndrome: an FDG-PET study. I. Regional changes in cerebral glucose metabolism differentiating patients and controls. Braun, A.R., Stoetter, B., Randolph, C., Hsiao, J.K., Vladar, K., Gernert, J., Carson, R.E., Herscovitch, P., Chase, T.N. Neuropsychopharmacology (1993) [Pubmed]
  3. Postnatal high-peak blood ethanol concentration and external cue-based discrimination learning and reversal in the preweanling rat: comparison with memory-based discrimination learning. Greene, P.L., Diaz-Granados, J.L., Amsel, A. Behav. Neurosci. (1994) [Pubmed]
  4. The neuroanatomy of 5-HT dysregulation and panic disorder. Grove, G., Coplan, J.D., Hollander, E. The Journal of neuropsychiatry and clinical neurosciences. (1997) [Pubmed]
  5. What is the possible contribution of Ca2+-stimulated adenylate cyclase to acquisition, consolidation and retention of an associative olfactory memory in Drosophila. Dudai, Y., Corfas, G., Hazvi, S. J. Comp. Physiol. A (1988) [Pubmed]
  6. Neuroanatomy. Antibodies to acetylcholine at last. Eckenstein, F. Nature (1985) [Pubmed]
  7. An interpretation of Michelangelo's Creation of Adam based on neuroanatomy. Meshberger, F.L. JAMA (1990) [Pubmed]
  8. Involvement of striate and extrastriate visual cortical areas in spatial attention. Martínez, A., Anllo-Vento, L., Sereno, M.I., Frank, L.R., Buxton, R.B., Dubowitz, D.J., Wong, E.C., Hinrichs, H., Heinze, H.J., Hillyard, S.A. Nat. Neurosci. (1999) [Pubmed]
  9. Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Skoulakis, E.M., Davis, R.L. Neuron (1996) [Pubmed]
  10. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Schwarting, R.K., Huston, J.P. Prog. Neurobiol. (1996) [Pubmed]
  11. Cognitive neuroscience of attention deficit hyperactivity disorder and hyperkinetic disorder. Swanson, J., Castellanos, F.X., Murias, M., LaHoste, G., Kennedy, J. Curr. Opin. Neurobiol. (1998) [Pubmed]
  12. Role of the endogenous opioid system on the neuropsychopharmacological effects of ethanol: new insights about an old question. Sanchis-Segura, C., Grisel, J.E., Olive, M.F., Ghozland, S., Koob, G.F., Roberts, A.J., Cowen, M.S. Alcohol. Clin. Exp. Res. (2005) [Pubmed]
  13. Mechanisms and current treatments of urogenital dysfunction in multiple sclerosis. Fernández, O. J. Neurol. (2002) [Pubmed]
  14. Paul Flechsig's system of myelogenetic cortical localization in the light of recent research in neuroanatomy and neurophysiology. Part I. Meyer, A. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques. (1981) [Pubmed]
  15. Functional neuroanatomy of the auditory cortex studied with [2-14C] Deoxyglucose. Hungerbühler, J.P., Saunders, J.C., Greenberg, J., Reivich, M. Exp. Neurol. (1981) [Pubmed]
  16. Immunohistochemical demonstration of serotonin-containing axons in the hypothalamus of the white-footed mouse, Peromyscus leucopus. Phelix, C.F., Adai, D.M., Cantu, C., Chen, H., Wayner, M.J. Brain Res. (1998) [Pubmed]
  17. Alteration of functional neuroanatomy of simple object memory in medial temporal lobe epilepsy patients. Kang, E., Nam, H., Lee, D.S., Lee, S.K., Lee, K.M., Park, S.H., Lee, J.S., Chung, J.K., Lee, M.C. Neuroreport (2002) [Pubmed]
  18. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Saxena, S., Brody, A.L., Schwartz, J.M., Baxter, L.R. The British journal of psychiatry. Supplement. (1998) [Pubmed]
  19. Mice with very low expression of the vesicular monoamine transporter 2 gene survive into adulthood: potential mouse model for parkinsonism. Mooslehner, K.A., Chan, P.M., Xu, W., Liu, L., Smadja, C., Humby, T., Allen, N.D., Wilkinson, L.S., Emson, P.C. Mol. Cell. Biol. (2001) [Pubmed]
  20. NeuroNames Brain Hierarchy. Bowden, D.M., Martin, R.F. Neuroimage (1995) [Pubmed]
  21. Hypothalamic neuroanatomy: steroid hormone binding and patterns of axonal projections. Pfaff, D.W., Conrad, L.C. Int. Rev. Cytol. (1978) [Pubmed]
  22. GABA and schizophrenia: a review of basic science and clinical studies. Wassef, A., Baker, J., Kochan, L.D. Journal of clinical psychopharmacology. (2003) [Pubmed]
  23. Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. Ward, R.P., Dorsa, D.M. J. Comp. Neurol. (1996) [Pubmed]
  24. Learning impairments and motor dysfunctions in adult Lhx5-deficient mice displaying hippocampal disorganization. Paylor, R., Zhao, Y., Libbey, M., Westphal, H., Crawley, J.N. Physiol. Behav. (2001) [Pubmed]
  25. Vasopressin as a target for antidepressant development: an assessment of the available evidence. Scott, L.V., Dinan, T.G. Journal of affective disorders. (2002) [Pubmed]
  26. FOXP2 and the neuroanatomy of speech and language. Vargha-Khadem, F., Gadian, D.G., Copp, A., Mishkin, M. Nat. Rev. Neurosci. (2005) [Pubmed]
  27. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Forrest, D., Yuzaki, M., Soares, H.D., Ng, L., Luk, D.C., Sheng, M., Stewart, C.L., Morgan, J.I., Connor, J.A., Curran, T. Neuron (1994) [Pubmed]
  28. Animal models of inherited epilepsy. Buchhalter, J.R. Epilepsia (1993) [Pubmed]
  29. The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. Opitz, B., Mecklinger, A., Friederici, A.D., von Cramon, D.Y. Cereb. Cortex (1999) [Pubmed]
  30. The brain basis of piano performance. Parsons, L.M., Sergent, J., Hodges, D.A., Fox, P.T. Neuropsychologia. (2005) [Pubmed]
WikiGenes - Universities