The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions.

The NHE family of ion exchangers includes six isoforms (NHE1-NHE6) that function in an electroneutral exchange of intracellular H(+) for extracellular Na(+). This review focuses on the only ubiquitously expressed isoform, NHE1, which is localized at the plasma membrane where it plays a critical role in intracellular pH (pHi) and cell volume homeostasis. All NHE isoforms share a similar topology: an N-terminus of 12 transmembrane (TM) alpha-helices that collectively function in ion exchange, and a C-terminal cytoplasmic regulatory domain that modulates transport activity by the TM domain. Extracellular signals, mediated by diverse classes of cell-surface receptors, regulate NHE1 activity through distinct signaling networks that converge to directly modify the C-terminal regulatory domain. Modifications in the C-terminus, including phosphorylation and the binding of regulatory proteins, control transport activity by altering the affinity of the TM domain for intracellular H(+). Recently, it was determined that NHE1 also functions as a membrane anchor for the actin-based cytoskeleton, independently of its role in ion translocation. Through its effects on pHi homeostasis, cell volume, and the actin cortical network, NHE1 regulates a number of cell behaviors, including adhesion, shape determination, migration, and proliferation.[1]

References

  1. The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Putney, L.K., Denker, S.P., Barber, D.L. Annu. Rev. Pharmacol. Toxicol. (2002) [Pubmed]
 
WikiGenes - Universities