The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Overproduction, purification, and characterization of recombinant bifunctional threonine-sensitive aspartate kinase-homoserine dehydrogenase from Arabidopsis thaliana.

In plant, the first and the third steps of the synthesis of methionine and threonine are catalyzed by a bifunctional enzyme, aspartate kinase-homoserine dehydrogenase (AK-HSDH). In this study, we report the first purification and characterization of a highly active threonine-sensitive AK-HSDH from plants (Arabidopsis thaliana). The specific activities corresponding to the forward reaction of AK and reverse reaction of HSDH of AK-HSDH were 5.4 micromol of aspartyl phosphate produced min(-1) mg(-1) of protein and 18.8 micromol of NADPH formed min(-1) mg(-1) of protein, respectively. These values are 200-fold higher than those reported previously for partially purified plant enzymes. AK-HSDH exhibited hyperbolic kinetics for aspartate, ATP, homoserine, and NADP with K(M) values of 11.6 mM, 5.5 mM, 5.2 mM, and 166 microM, respectively. Threonine was found to inhibit both AK and HSDH activities by decreasing the affinity of the enzyme for its substrates and cofactors. In the absence of threonine, AK-HSDH behaved as an oligomer of 470 kDa. Addition of the effector converted the enzyme into a tetrameric form of 320 kDa.[1]

References

 
WikiGenes - Universities