The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

alpha 2-Macroglobulin exposure reduces calcium responses to N-methyl-D-aspartate via low density lipoprotein receptor-related protein in cultured hippocampal neurons.

There is increasing evidence that the low-density lipoprotein receptor-related protein ( LRP) can function as a signaling link in the central nervous system. To investigate the pathophysiological role of LRP in the central nervous system, we examined the effects of activated alpha(2)-macroglobulin (alpha2M*), a ligand of LRP, on intracellular calcium signaling in cultured rat hippocampal neurons. Neuronal effects of alpha2M* (50 nm) were assessed by a comparison of calcium signals produced in control and alpha2M*-pretreated neurons by N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid. alpha2M* pretreatment significantly decreased the calcium signals to NMDA, whereas little change was observed for the signals to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid. Native alpha2M, which is not a ligand for LRP, did not affect signals to NMDA. The receptor-associated protein prevented alpha2M*-induced decrease of calcium responses to NMDA, suggesting that alpha2M* exerted its effects through an LRP-mediated pathway. Experiments changing calcium sources demonstrated that alpha2M* pretreatment altered calcium responses to NMDA by primarily changing extracellular calcium influx and subsequently affecting calcium release from intracellular calcium stores. Immunoblot analysis demonstrated that alpha2M* caused a reduction in the levels of the NMDA receptor subunit, NMDAR1. These results suggest that alpha2M* can alter the neuronal response to excitatory neurotransmitters and that alpha2M* pretreatment selectively reduced the calcium responses to NMDA by down-regulating the NMDA receptor.[1]

References

 
WikiGenes - Universities