Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation.
Galectin-3 is a multifunctional oncogenic protein found in the nucleus and cytoplasm and also the extracellular milieu. Although recent studies demonstrated an anti-apoptotic activity of galectin-3, neither the functional site nor the mechanism of how galectin-3 regulates apoptosis is known. In this study, we examined the subcellular localization of galectin-3 during apoptosis and investigated its anti-apoptotic actions. We report that galectin-3 translocates to the perinuclear membrane following a variety of apoptotic stimuli. Confocal microscopy and biochemical analysis revealed that galectin-3 is enriched in the mitochondria and prevents mitochondrial damage and cytochrome c release. Using a yeast two-hybrid system, we screened for galectin-3-interacting proteins that regulate galectin-3 localization and anti-apoptotic activity. Synexin, a Ca(2+)- and phospholipid-binding protein, was one of the proteins identified. We confirmed direct interaction between galectin-3 and synexin by glutathione S-transferase pull-down assay in vitro. We showed that galectin-3 failed to translocate to the perinuclear membranes when expression of synexin was down-regulated using an oligodeoxyribonucleotide complementary to the synexin mRNA, suggesting a role for synexin in galectin-3 trafficking. Furthermore, synexin down-regulation abolished anti-apoptotic activity of galectin-3. Taken together, these results suggest that synexin mediates galectin-3 translocation to the perinuclear mitochondrial membranes, where it regulates mitochondrial integrity critical for apoptosis regulation.[1]References
- Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. Yu, F., Finley, R.L., Raz, A., Kim, H.R. J. Biol. Chem. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg