The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Thioredoxin-2 but not thioredoxin-1 is a substrate of thioredoxin peroxidase-1 from Drosophila melanogaster: isolation and characterization of a second thioredoxin in D. Melanogaster and evidence for distinct biological functions of Trx-1 and Trx-2.

As Drosophila melanogaster does not contain glutathione reductase, the thioredoxin system has a key function for glutathione disulfide reduction in insects (Kanzok, S. M., Fechner, A., Bauer, H., Ulschmid, J. K., Müller, H. M., Botella-Munoz, J., Schneuwly, S., Schirmer, R. H., and Becker, K. (2001) Science 291, 643-646). In view of these unique conditions, the protein systems participating in peroxide metabolism and in redox signaling are of special interest. The genes for a second thioredoxin (DmTrx-2) and a thioredoxin peroxidase (DmTPx-1) were cloned and expressed, and the proteins were characterized. In its disulfide form, the 13-kDa protein thioredoxin-2 is a substrate of thioredoxin reductase-1 (K(m) = 5.2 microm, k(cat) = 14.5 s(-1)) and in its dithiol form, an electron donor for TPx-1 (K(m) = 9 microm, k(cat) = 5.4 s(-1)). DmTrx-2 is capable of reducing glutathione disulfide with a second order rate constant of 170 m(-1) s(-1) at pH 7.4 and 25 degrees C. Western blot analysis indicated that this thioredoxin represents up to 1% of the extractable protein of D. melanogaster Schneider cells or whole fruit flies. Recombinant thioredoxin peroxidase-1 (subunit molecular mass = 23 kDa) was found to be a decameric protein that can efficiently use Trx-2 but not Trx-1 as a reducing substrate. The new electron pathway found in D. melanogaster is also representative for insects that serve as vectors of disease. As a first step we have cloned and functionally expressed the gene that is the orthologue of DmTrx-2 in the malaria mosquito Anopheles gambiae.[1]


WikiGenes - Universities