The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Necessity of enzymatic activity of alkaline phosphatase for mineralization of osteoblastic cells.

Alkaline phosphatase ( ALP) is supposed to be important for bone formation; however, its role is not clear. In this study, we examined the importance of enzymatic activity of ALP and anchoring of ALP protein to the cells for mineralization of an osteoblastic cell line, MC3T3-E1. While we cultured the cells in the presence of tetramisole, an inhibitor of ALP activity, ALP protein was expressed at a similar level to that in the control. Although tetramisole showed no effect on cell growth and increased hydroxyproline accumulation, it decreased the osteocalcin production and the accumulation of calcium and phosphate in the matrices. Tetramisole also inhibited mineralized nodule formation, which was observed by optical microscopy and detected by Von Kossa staining. On the other hand, when ALP protein was released from the cell membranes with the use of phosphatidylinositol-specific phospholipase C, no marked changes were detected in hydroxyproline, calcium and phosphate accumulations in the matrices at late calcification stage, which was consistent with the morphological findings. These results clearly show that enzymatic activity of ALP is necessary for mineralization of MC3T3-E1 cells, but not the presence of ALP protein or anchoring of ALP to the cells.[1]

References

  1. Necessity of enzymatic activity of alkaline phosphatase for mineralization of osteoblastic cells. Sugawara, Y., Suzuki, K., Koshikawa, M., Ando, M., Iida, J. Jpn. J. Pharmacol. (2002) [Pubmed]
 
WikiGenes - Universities