The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Akp1  -  alkaline phosphatase 1

Mus musculus

Synonyms: Akp-1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Akp1


Psychiatry related information on Akp1

  • ALP converted disodium phenyl phosphate into its product, phenol, at a relatively high reaction rate without consumption, with resultant amplification of the signal on prolonged reaction time, producing an adequate amount of product for final detection [5].
  • During gestation ALP-specific activity peaked at Day 7 to 8 (Day 1 is day of detection of the copulation plug) followed by a rapid decline to control levels by Day 9 [6].

High impact information on Akp1

  • An Flp indicator mouse expressing alkaline phosphatase from the ROSA26 locus [7].
  • Osteoblasts from both stromal and calvarial explants showed delayed maturation in vitro as measured by expression of alkaline phosphatase (ALP), induction of mRNA encoding osteocalcin and mineral deposition [8].
  • Binding activity detected with alkaline phosphatase fusions of ELF-1 and Mek4 also reveals gradients and provides direct evidence for molecular complementarity of gradients in reciprocal fields [9].
  • They form colonies of densely packed, alkaline phosphatase-positive, SSEA-1-positive cells resembling undifferentiated embryonic stem (ES) cells in morphology [10].
  • The differentiation of the osteoblastic phenotype was stimulated as determined by increased alkaline phosphatase production and the deposition of mineral [11].

Chemical compound and disease context of Akp1


Biological context of Akp1

  • The gene encoding C9.1 antigen was linked to the Akp1 isozyme locus on chromosome 1 close to the 2B4 gene [17].
  • This study suggests that the reduced ALP activity after skeletal unloading is related to downregulation of PECAM-1 expression in bone marrow cells in mice [18].
  • All three mouse genes are composed of 11 exons interrupted by 10 small introns (70-261 bp) with an organization analogous to that of the three human tissue-specific AP genes [19].
  • Introns interrupt the coding sequences at identical positions in all three mouse and human tissue-specific AP genes [19].
  • A repetitive sequence inserted in exon XI of the mouse intestinal AP gene codes for a unique stretch of 41 amino acids, 20 of which are threonines [19].

Anatomical context of Akp1


Associations of Akp1 with chemical compounds


Physical interactions of Akp1


Regulatory relationships of Akp1


Other interactions of Akp1

  • A variety of sequence polymorphisms in this chromosomal region could be responsible for the differences in serum AP activity; the Akp2 gene, however, with several known amino acid substitutions between protein sequences of the B6 and D2 strains, is a leading candidate [32].
  • Sas-2 was located by linkage analysis between Idh-1 locus and Akp-1 locus on chromosome 1 [36].
  • A manganese-requiring isozyme of liver and kidney unaffected by neuraminidase is described, and the locus controlling variation in this isozyme is designated Akp-1 [22].
  • Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production [37].
  • We report the inactivation, via homologous recombination, of two of the three active mouse alkaline phosphatase genes, i.e., embryonic (EAP) and tissue nonspecific (TNAP) [38].

Analytical, diagnostic and therapeutic context of Akp1


  1. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. Fedde, K.N., Blair, L., Silverstein, J., Coburn, S.P., Ryan, L.M., Weinstein, R.S., Waymire, K., Narisawa, S., Millán, J.L., MacGregor, G.R., Whyte, M.P. J. Bone Miner. Res. (1999) [Pubmed]
  2. Characterization of two different alkaline phosphatases in mouse teratoma: partial purification, electrophoretic, and histochemical studies. Wada, H.G., VandenBerg, S.R., Sussman, H.H., Grove, W.E., Herman, M.M. Cell (1976) [Pubmed]
  3. Monitoring of murine osteosarcoma by serial alkaline phosphatase determinations. Ghanta, V.K., Hiramoto, R.N., Weiss, A.B., Caudill, L. J. Natl. Cancer Inst. (1976) [Pubmed]
  4. Association of alkaline phosphatase with an autoantigen recognised by circulating anti-neutrophil antibodies in systemic vasculitis. Lockwood, C.M., Bakes, D., Jones, S., Whitaker, K.B., Moss, D.W., Savage, C.O. Lancet (1987) [Pubmed]
  5. Measurement of alkaline phosphatase isoenzymes in individual mouse bone marrow fibroblast cells based on capillary electrophoresis with on-capillary enzyme-catalyzed reaction and electrochemical detection. Sun, X., Jin, W., Li, D., Bai, Z. Electrophoresis (2004) [Pubmed]
  6. Characterization and expression of uterine and placental alkaline phosphatases in the mouse. Pollard, J.W., Jahan, M., Butterworth, P.J. J. Reprod. Fertil. (1990) [Pubmed]
  7. An Flp indicator mouse expressing alkaline phosphatase from the ROSA26 locus. Awatramani, R., Soriano, P., Mai, J.J., Dymecki, S. Nat. Genet. (2001) [Pubmed]
  8. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Li, B., Boast, S., de los Santos, K., Schieren, I., Quiroz, M., Teitelbaum, S.L., Tondravi, M.M., Goff, S.P. Nat. Genet. (2000) [Pubmed]
  9. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cheng, H.J., Nakamoto, M., Bergemann, A.D., Flanagan, J.G. Cell (1995) [Pubmed]
  10. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Matsui, Y., Zsebo, K., Hogan, B.L. Cell (1992) [Pubmed]
  11. Differentiation of canalicular cell processes in bone cells by basement membrane matrix components: regulation by discrete domains of laminin. Vukicevic, S., Luyten, F.P., Kleinman, H.K., Reddi, A.H. Cell (1990) [Pubmed]
  12. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Shimada, T., Mizutani, S., Muto, T., Yoneya, T., Hino, R., Takeda, S., Takeuchi, Y., Fujita, T., Fukumoto, S., Yamashita, T. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  13. Comparative study of alkaline phosphatase activity in lymphocytes, mitogen-induced blasts, lymphoblastoid cell lines, acute myeloid leukemia, and chronic lymphatic leukemia cells. Neumann, H., Klein, E., Hauck-Granoth, R., Yachnin, S., Ben-Bassat, H. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  14. Isozyme phenotypes of polyoma virus tumors in mice. Fisher, S.E., Dawe, C.J., Williams, J.E., Morgan, W.D. Cancer Res. (1983) [Pubmed]
  15. Inhibitory effect of L-homoarginine on murine osteosarcoma cell proliferation. Kikuchi, Y., Takagi, M., Parmley, R.T., Ghanta, V.K., Hiramoto, R.N. Cancer Res. (1982) [Pubmed]
  16. Alkaline phosphatase activities of 6-thiopurine-sensitive and -resistant sublines of Sarcoma 180. Lee, M.H., Huang, Y.M., Sartorelli, A.C. Cancer Res. (1978) [Pubmed]
  17. Characterization of a surface membrane molecule expressed by natural killer cells in most inbred mouse strains: monoclonal antibody C9.1 identifies an allelic form of the 2B4 antigen. Kubota, K., Katoh, H., Muguruma, K., Koyama, K. Immunology (1999) [Pubmed]
  18. Reduced expression of platelet endothelial cell adhesion molecule-1 in bone marrow cells in mice after skeletal unloading. Sakuma-Zenke, M., Sakai, A., Nakayamada, S., Kunugita, N., Tabata, T., Uchida, S., Tanaka, S., Mori, T., Nakai, K., Tanaka, Y., Nakamura, T. J. Bone Miner. Res. (2005) [Pubmed]
  19. Genomic structure and comparison of mouse tissue-specific alkaline phosphatase genes. Manes, T., Glade, K., Ziomek, C.A., Millán, J.L. Genomics (1990) [Pubmed]
  20. Dissection of the odontoblast differentiation process in vitro by a combination of FGF1, FGF2, and TGFbeta1. Unda, F.J., Martín, A., Hilario, E., Bègue-Kirn, C., Ruch, J.V., Aréchaga, J. Dev. Dyn. (2000) [Pubmed]
  21. Stage-specific expression patterns of alkaline phosphatase during development of the first arch skeleton in inbred C57BL/6 mouse embryos. Miyake, T., Cameron, A.M., Hall, B.K. J. Anat. (1997) [Pubmed]
  22. Genetic variation in alkaline phosphatase of the house mouse (Mus musculus) with emphasis on a manganese-requiring isozyme. Wilcox, F.H., Hirschhorn, L., Taylor, B.A., Womack, J.E., Roderick, T.H. Biochem. Genet. (1979) [Pubmed]
  23. Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Fonta, C., Négyessy, L., Renaud, L., Barone, P. Cereb. Cortex (2004) [Pubmed]
  24. Long-term culture and transplantation of murine testicular germ cells. Jeong, D., McLean, D.J., Griswold, M.D. J. Androl. (2003) [Pubmed]
  25. Changes in the pattern of expression of alkaline phosphatase in the mouse uterus and placenta during gestation. Johansson, S., Wide, M. Anat. Embryol. (1994) [Pubmed]
  26. Genetics of the Akp-2 locus for alkaline phosphatase of liver, kidney, bone, and placenta in the mouse. Linkage with the Ahd-1 locus on chromosome 4. Wilcox, F.H., Taylor, B.A. J. Hered. (1981) [Pubmed]
  27. Identification of a multiprotein complex interacting with the c-fos serum response element. de Belle, I., Walker, P.R., Smith, I.C., Sikorska, M. Mol. Cell. Biol. (1991) [Pubmed]
  28. Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells. Ubiquitin/proteasome-dependent regulation. Tintut, Y., Parhami, F., Le, V., Karsenty, G., Demer, L.L. J. Biol. Chem. (1999) [Pubmed]
  29. Cartilage link protein interacts with neurocan, which shows hyaluronan binding characteristics different from CD44 and TSG-6. Rauch, U., Hirakawa, S., Oohashi, T., Kappler, J., Roos, G. Matrix Biol. (2004) [Pubmed]
  30. Physicochemical characterization of the nuclear form of Ah receptor from mouse hepatoma cells exposed in culture to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Prokipcak, R.D., Okey, A.B. Arch. Biochem. Biophys. (1988) [Pubmed]
  31. Adsorption of collagenase to particulate titanium: a possible mechanism for collagenase localization in periprosthetic tissue. Kane, K.R., DeHeer, D.H., Owens, S.R., Beebe, J.D., Swanson, A.B. Journal of applied biomaterials : an official journal of the Society for Biomaterials. (1994) [Pubmed]
  32. Serum alkaline phosphatase activity is regulated by a chromosomal region containing the alkaline phosphatase 2 gene (Akp2) in C57BL/6J and DBA/2J mice. Foreman, J.E., Blizard, D.A., Gerhard, G., Mack, H.A., Lang, D.H., Van Nimwegen, K.L., Vogler, G.P., Stout, J.T., Shihabi, Z.K., Griffith, J.W., Lakoski, J.M., McClearn, G.E., Vandenbergh, D.J. Physiol. Genomics (2005) [Pubmed]
  33. Igf1 promotes longitudinal bone growth by insulin-like actions augmenting chondrocyte hypertrophy. Wang, J., Zhou, J., Bondy, C.A. FASEB J. (1999) [Pubmed]
  34. Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. Ichida, F., Nishimura, R., Hata, K., Matsubara, T., Ikeda, F., Hisada, K., Yatani, H., Cao, X., Komori, T., Yamaguchi, A., Yoneda, T. J. Biol. Chem. (2004) [Pubmed]
  35. MyoD enhances BMP7-induced osteogenic differentiation of myogenic cell cultures. Komaki, M., Asakura, A., Rudnicki, M.A., Sodek, J., Cheifetz, S. J. Cell. Sci. (2004) [Pubmed]
  36. A gene locus controlling a serum protein migrating electrophoretically in the beta region of mice and detected by using a strain derived from the Japanese wild mouse (Mus musculus molossinus). Harada, Y.N., Hayakawa, J., Noda, E., Tomita, T. J. Immunogenet. (1987) [Pubmed]
  37. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J.M., Fujisawa-Sehara, A., Suda, T. J. Cell Biol. (1994) [Pubmed]
  38. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Narisawa, S., Fröhlander, N., Millán, J.L. Dev. Dyn. (1997) [Pubmed]
  39. A new variant of the mouse Akp1 locus. Lee, C.H., Kim, E.H., Won, Y.S., Choi, Y.K., Nam, K.H., Kim, H.C., Hyun, B.H., Suh, J.G., Oh, Y.S. Biochem. Genet. (2005) [Pubmed]
  40. Purification of primordial germ cells from TNAPbeta-geo mouse embryos using FACS-gal. Abe, K., Hashiyama, M., Macgregor, G., Yamamura, K. Dev. Biol. (1996) [Pubmed]
  41. Isolation and characterization of differentially expressed genes in invasive and non-invasive immortalized murine male germ cells in vitro. Tascou, S., Nayernia, K., Uedelhoven, J., Böhm, D., Jalal, R., Ahmed, M., Engel, W., Burfeind, P. Int. J. Oncol. (2001) [Pubmed]
  42. Mouse Ly-31.1 is an alloantigenic determinant of alkaline phosphatase predominantly expressed in the kidney and bone. Dairiki, K., Nakamura, S., Ikegami, S., Nakamura, M., Fujimori, T., Tamaoki, N., Tada, N. Immunogenetics (1989) [Pubmed]
  43. Expression of alkaline phosphatase in the mature mouse placenta visualized by in situ hybridization and enzyme histochemistry. Johansson, S., Wide, M., Young, E., Lindblad, P. Anat. Embryol. (1993) [Pubmed]
WikiGenes - Universities