The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition by atovaquone of CYP2C9-mediated sulphamethoxazole hydroxylamine formation.

OBJECTIVE: To determine whether the antiprotozoal drug atovaquone inhibits the cytochrome P(450) (CYP)2C9-mediated metabolism of sulphamethoxazole (SMX) to its potentially harmful hydroxylamine metabolite (SMX-HA) in vitro. METHODS: Generation of SMX-HA from SMX was measured directly using high-performance liquid chromatography in human liver microsomes or expressed CYP2C9*1, with or without preincubation with reduced nicotinamide adenine dinucleotide phosphate, and the inhibition constant (K(i)) for atovaquone was determined. To determine the effect of protein binding in vitro, in some experiments, atovaquone was pre-incubated with serum proteins, followed by filtration. RESULTS: The K(i) for inhibition of SMX-HA formation by atovaquone was 15 microM, which is within clinically attainable total plasma atovaquone concentrations of 45-55 microM. Atovaquone (45 microM) inhibited SMX-HA formation by 39% in human liver microsomes. However, following preincubation of atovaquone with serum proteins, no inhibitory effect by atovaquone was observed, consistent with previous reports of high plasma protein binding for atovaquone. Compared with human liver microsomes, CYP2C9*1 showed an eightfold greater specific activity for SMX-HA generation; as for liver microsomes, CYP2C9*1 activity was inhibited by atovaquone. CONCLUSIONS: Atovaquone is a relatively weak inhibitor of CYP2C9-mediated SMX-HA formation in vitro. However, the effect is not observed in the presence of serum proteins. It is therefore unlikely that atovaquone would significantly inhibit SMX-HA formation in vivo.[1]

References

  1. Inhibition by atovaquone of CYP2C9-mediated sulphamethoxazole hydroxylamine formation. Miller, J.L., Trepanier, L.A. Eur. J. Clin. Pharmacol. (2002) [Pubmed]
 
WikiGenes - Universities