The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Synthesis of N-[4-[1-ethyl-2-(2,4-diaminofuro[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid as an antifolate.

N-[4-[1-Ethyl-2-(2,4-diaminofuro[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid 3 was designed and synthesized to investigate the effect of homologation of a C9-methyl to an ethyl on dihydrofolate reductase (DHFR) inhibition and on antitumor activity. Compound 3 was obtained via a concise seven step synthesis starting from palladium-catalyzed carbonylation of 4-propionylphenol, followed by a Wittig reaction with 2,4-diamino-5-(chloromethyl)furo[2,3-d]pyrimidine (6), catalytic hydrogenation, hydrolysis, and standard peptide coupling with diethyl L-glutamate. The biological results indicated that extending the C9-methyl group to an ethyl on the C8-C9 bridge region (analogue 3) doubled the inhibitory potency against recombinant human (rh) DHFR (IC(50) = 0.21 microM) as compared to the C9-methyl analogue 1 and was 4-fold more potent than the C9-H analogue 2. As compared to 1, compound 3 demonstrated increased growth inhibitory potency against several human tumor cell lines in culture with GI(50) values < 1.0 x 10(-8) M. Compound 3 was also a weak inhibitor of rh thymidylate synthase. Compounds 1 and 3 were efficient substrates of human folylpolyglutamate synthetase (FPGS). Further evaluation of the cytotoxicity of 3 in methotrexate-resistant CCRF-CEM cell sublines and metabolite protection studies implicated DHFR as the primary intracelluar target. Thus, alkylation of the C9 position in the C8-C9 bridge of the classical 5-substituted 2,4-diaminofuro[2,3-d]pyrimidine is highly conducive to DHFR and tumor inhibitory activity as well as FPGS substrate efficiency.[1]

References

 
WikiGenes - Universities