The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

First evidence for phototropin-related blue-light receptors in prokaryotes.

A prokaryotic protein, YtvA from Bacillus subtilis, was found to possess a light, oxygen, voltage (LOV) domain sharing high homology with the photoactive, flavin mononucleotide (FMN)-binding LOV domains of phototropins (phot), blue-light photoreceptors for phototropism in higher plants. Computer-based three-dimensional modeling suggests that YtvA-LOV binds FMN in a similar pocket as phot-LOVs. Recombinant YtvA indeed exhibits the same spectroscopical features and blue-light-induced photochemistry as phot-LOVs, with the reversible formation of a blue-shifted photoproduct, assigned to an FMN-cysteine thiol adduct (Thio383). By means of laser-flash photolysis and time-resolved optoacoustic experiments, we measured the quantum yield of formation for Thio383, Phi(Thio) = 0.49, and the enthalpy change, DeltaH(Thio) = 135 kJ/mol, with respect to the parent state. The formation of Thio383 is accompanied by a considerable volume contraction, DeltaV(Thio) = -13.5 ml/mol. Similar to phot-LOVs, Thio383 is formed from the decay of a red-shifted transient species, T650, within 2 micros. In both YtvA and free FMN, this transient has an enthalpy content of approximately 200 kJ/mol, and its formation is accompanied by a small contraction, DeltaV(T) approximately -1.5 ml/mol, supporting the assignment of T650 to the FMN triplet state, as suggested by spectroscopical evidences. These are the first studies indicating that phototropin-related, blue-light receptors may exist also in prokaryotes, besides constituting a steadily growing family in plants.[1]

References

  1. First evidence for phototropin-related blue-light receptors in prokaryotes. Losi, A., Polverini, E., Quest, B., Gärtner, W. Biophys. J. (2002) [Pubmed]
 
WikiGenes - Universities