The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on Phototropism


Biological context of Phototropism


Associations of Phototropism with chemical compounds

  • Phototropin, a major blue-light receptor for phototropism in seed plants, exhibits blue-light-dependent autophosphorylation and contains two light, oxygen, or voltage (LOV) domains and a serine/threonine kinase domain [10].
  • Phototropins (phot1 and phot2), the plant blue-light receptors for phototropism, chloroplast movement, and stomatal opening, are flavoproteins that contain two approximately 12 kDa FMN-binding domains, LOV1 and LOV2, at their N-terminus, and a serine/threonine protein kinase domain at their C-terminus [11].
  • This mutant showed abnormal phototropism, which was correlated with the altered sterol composition [12].
  • Feeding with the tetrapyrroles biliverdin, the proposed precursor of the phytochrome chromophore, or phycocyanobilin, which may replace the phytochrome chromophore, resulted in the rescue of ptr116 phototropism [13].
  • CONCLUSIONS: The data suggest that Ca(2+) participates in the signalling stage of the BL-induced phototropism, whereas the phototropic bending response is linked to changes in the transport of H(+), K(+) and Cl(-) [14].

Gene context of Phototropism


  1. Blue-light photoreceptors in higher plants. Briggs, W.R., Huala, E. Annu. Rev. Cell Dev. Biol. (1999) [Pubmed]
  2. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Ahmad, M., Jarillo, J.A., Smirnova, O., Cashmore, A.R. Nature (1998) [Pubmed]
  3. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Ahmad, M., Cashmore, A.R. Nature (1993) [Pubmed]
  4. Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Gehring, C.A., Williams, D.A., Cody, S.H., Parish, R.W. Nature (1990) [Pubmed]
  5. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K., Wada, M. Science (2001) [Pubmed]
  6. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Haga, K., Takano, M., Neumann, R., Iino, M. Plant Cell (2005) [Pubmed]
  7. Blue light modulation of ion transport in the slime mutant of Neurospora crassa. Levina, N.N., Dunina-Barkovskaya, A.Y., Shabala, S., Lew, R.R. J. Membr. Biol. (2002) [Pubmed]
  8. Blue-light receptor requirement for gravitropism, autochemotropism and ethylene response in Phycomyces. Campuzano, V., Galland, P., Alvarez, M.I., Eslava, A.P. Photochem. Photobiol. (1996) [Pubmed]
  9. A genetic map of Phycomyces blakesleeanus. Orejas, M., Peláez, M.I., Alvarez, M.I., Eslava, A.P. Mol. Gen. Genet. (1987) [Pubmed]
  10. Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Crosson, S., Moffat, K. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  11. Vibration spectroscopy reveals light-induced chromophore and protein structural changes in the LOV2 domain of the plant blue-light receptor phototropin 1. Swartz, T.E., Wenzel, P.J., Corchnoy, S.B., Briggs, W.R., Bogomolni, R.A. Biochemistry (2002) [Pubmed]
  12. Sterols in erg mutants of Phycomyces: metabolic pathways and physiological effects. Barrero, A.F., Oltra, J.E., Robinson, J., Burke, P.V., Jiménez, D., Oliver, E. Steroids (2002) [Pubmed]
  13. Phytochrome control of phototropism and chlorophyll accumulation in the apical cells of protonemal filaments of wildtype and an aphototropic mutant of the moss Ceratodon purpureus. Lamparter, T., Esch, H., Cove, D., Hartmann, E. Plant Cell Physiol. (1997) [Pubmed]
  14. Changes in ion fluxes during phototropic bending of etiolated oat coleoptiles. Babourina, O., Godfrey, L., Voltchanskii, K. Ann. Bot. (2004) [Pubmed]
  15. Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Motchoulski, A., Liscum, E. Science (1999) [Pubmed]
  16. ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Sedbrook, J.C., Chen, R., Masson, P.H. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  17. A brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism. Whippo, C.W., Hangarter, R.P. Plant Physiol. (2005) [Pubmed]
  18. Phytochromes A and B mediate red-light-induced positive phototropism in roots. Kiss, J.Z., Mullen, J.L., Correll, M.J., Hangarter, R.P. Plant Physiol. (2003) [Pubmed]
  19. Phytochrome regulation of pea phototropin. Elliott, R.C., Platten, J.D., Watson, J.C., Reid, J.B. J. Plant Physiol. (2004) [Pubmed]
WikiGenes - Universities