The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Aminopeptidases in Caenorhabditis elegans and Panagrellus redivivus: detection using peptide and non-peptide substrates.

Aminopeptidase activities were detected in extracts of the free-living nematodes Caenorhabditis elegans and Panagrellus redivivus using the aminoacyl substrate L-alanine-4-nitroanilide. The activities exhibited similarities in Km (C. elegans = 2.22 mM; P. redivivus = 2.09 mM) and specific activity (C. elegans = 1.38 +/- 0.43 mAU min(-1) x g(-1); P. redivivus, 1.23 +/- 0.18m AU min(-1) microg(-1). Each is inhibited competitively by amastatin (C. elegans IC50 = 0.46 microM; P. redivivus IC50 = 15.90 microM) and non-competitively by leuhistin (C. elegans IC50 = 3.00 microM; P. redivivus IC50 = 37.35 microM). The bioactive peptides adipokinetic hormone and substance P decrease the apparent aminopeptidase activities of each extract suggesting that the peptides compete with the Ala-pNA as substrates. With each extract, adipokinetic hormone appeared to be the more effective substrate. Digestion of adipokinetic hormone by C. elegans and P. redivivus extracts in the presence and absence of 1 mM amastatin produced distinct chromatographic profiles that suggest different digestion patterns for the two species. However, amastatin had clear effects on chromatographic profiles from each species indicating that an aminopeptidase is involved in the digestion of the peptide substrates. The data presented indicate that extracts of free-living nematodes are capable of metabolizing peptide hormones, and that this metabolism involves substrate-selective aminopeptidases.[1]

References

 
WikiGenes - Universities