The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation.

Protein kinase CK2 is a ubiquitous and pleiotropic Ser/Thr protein kinase involved in cell growth and transformation. Here we report the identification by yeast interaction trap of a CK2 interacting protein, UBC3B, which is highly homologous to the E2 ubiquitin conjugating enzyme UBC3/CDC34. UBC3B complements the yeast cdc34-2 cell cycle arrest mutant in S. cerevisiae and transfers ubiquitin to a target substrate in vitro. UBC3B is specifically phosphorylated by CK2 in vitro and in vivo. We mapped by deletions and site directed mutagenesis the phosphorylation site to a serine residue within the C-terminal domain in position 233 of UBC3B and in the corresponding serine residue of UBC3. Following CK2-dependent phosphorylation both UBC3B and UBC3 bind to the F-box protein beta-TrCP, the substrate recognition subunit of an SCF ( Skp1, Cul1, F-box) ubiquitin ligase. Furthermore, we observed that co-transfection of CK2alpha' together with UBC3B, but not with UBC3DeltaC, enhances the degradation of beta-catenin. Taken together these data suggest that CK2-dependent phosphorylation of UBC3 and UBC3B functions by regulating beta-TrCP substrate recognition.[1]

References

 
WikiGenes - Universities