The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration.

KIM-1 (kidney injury molecule-1) is a type I transmembrane glycoprotein expressed on dedifferentiated renal proximal tubule epithelial cells undergoing regeneration after toxic or ischemic injury. The extracellular domain of KIM-1 is composed of an immunoglobulin-like domain topping a long mucin-like domain, a structure that points to a possible role in cell adhesion by homology to several known adhesion proteins. Two splice variants (a and b), of the human KIM-1 having identical extracellular domains, differ in their cytoplasmic domains and tissue distributions. In this study, we report that the KIM-1b transcript is expressed predominantly in adult human kidney. We describe the generation of 10 monoclonal antibodies against the extracellular domain of human KIM-1, the mapping of their binding sites, and their use in identifying various forms of the protein. We show that human KIM-1b is expressed in adult kidney cell lines, and we demonstrate that a soluble form of KIM-1 is shed constitutively into the culture medium of the cell lines expressing endogenous or recombinant KIM-1b by membrane-proximal cleavage. A monoclonal antibody that binds at or close to the proteolytic site can partially block the shedding of KIM-1. Release of soluble KIM-1 is enhanced by activating the cells with phorbol 12-myristate 13-acetate and can be inhibited with two metalloproteinase inhibitors, BB-94 (Batimastat) and GM6001 (Ilomastat), suggesting that the cleavage is mediated by a metalloproteinase. We propose that the shedding of KIM-1 in the kidney undergoing regeneration constitutes an active mechanism allowing dedifferentiated regenerating cells to scatter on denuded patches of the basement membrane and reconstitute a continuous epithelial layer.[1]

References

  1. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. Bailly, V., Zhang, Z., Meier, W., Cate, R., Sanicola, M., Bonventre, J.V. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities