The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Gamma-glutamyl leukotrienase, a novel endothelial membrane protein, is specifically responsible for leukotriene D(4) formation in vivo.

The metabolism of cysteinyl leukotrienes in vivo and the pathophysiological effects of individual cysteinyl leukotrienes are primarily unknown. Recently we identified an additional member of the gamma-glutamyl transpeptidase (GGT) family, gamma-glutamyl leukotrienase (GGL), and developed mice deficient in this enzyme. Here we show that in vivo GGL, and not GGT as previously believed, is primarily responsible for conversion of leukotriene C(4) to leukotriene D(4), the most potent of the cysteinyl leukotrienes and the immediate precursor of leukotriene E(4). GGL is a glycoprotein consisting of two polypeptide chains encoded by one gene and is attached at the amino terminus of the heavy chain to endothelial cell membranes. In mice it localizes to capillaries and sinusoids in most organs and in lung to larger vessels as well. In contrast to wild-type and GGT-deficient mice, GGL-deficient mice do not form leukotriene D(4) in vivo either in blood when exogenous leukotriene C(4) is administered intravenously or in bronchoalveolar lavage fluid of Aspergillus fumigatus extract-induced experimental asthma. Further, GGL-deficient mice show leukotriene C(4) accumulation and significantly more airway hyperreponsiveness than wild-type mice in the experimental asthma, and induction of asthma results in increased GGL protein levels and enzymatic activity. Thus GGL plays an important role in leukotriene D(4) synthesis in vivo and in inflammatory processes.[1]

References

  1. Gamma-glutamyl leukotrienase, a novel endothelial membrane protein, is specifically responsible for leukotriene D(4) formation in vivo. Han, B., Luo, G., Shi, Z.Z., Barrios, R., Atwood, D., Liu, W., Habib, G.M., Sifers, R.N., Corry, D.B., Lieberman, M.W. Am. J. Pathol. (2002) [Pubmed]
 
WikiGenes - Universities