The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Photosynthetic energy conversion under extreme conditions--I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms.

The availability of dissolved nutrients such as nitrate under extreme low temperatures is a strong determinant in the development and growth of ice diatoms. Consequently we investigated regulation of photosynthesis in a mixed culture of three diatom species, which grew in chemostats at -1 degrees C, 15 micromol photons m(-2) s(-1) under N-limitation. When nitrogen is limiting, pigment-protein complexes are one of the most affected structures under low-light conditions. The loss of integral polar thylakoid components destabilized the bilayer structure of the membrane with consequences for lipid composition and the degree of fatty acid desaturation. N-Limitation caused a decrease in monogalactosydiacylglycerol (MGDG) and a simultaneous increase in bilayer forming digalactosyldiacylglycerol (DGDG). Their ratio MGDG:DGDG decreased from 3.4 +/- 0.1 to 1.1 +/- 0.4, while 20:5 n-3 fatty acids of chloroplast related phospholipid classes such as phosphatidylglycerol (PG) increased under N-limitation. These data reveal that lipids are important components, required to sustain membrane structure under a deficiency of integral membrane bound proteins and pigments. Nonetheless, energy conversion at photosystem II is still affected by N-limitation despite this structural regulation. Photosynthetic quantum yield (F(v)/F(m)) and electron transport rates decreased under N-limitation caused by an increasing amount of electron acceptors (second stable electron acceptor = Q(B)) which had slower reoxidation kinetics. The energy surplus under these conditions is stored in triacylglycerols, the main energy sink in Antarctic sea ice diatoms under N-limitation.[1]


WikiGenes - Universities