The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Highly efficient retroviral gene transfer into immortalized CD34(-) cells and organ distribution after transplantation into NOD/SCID mice.

BACKGROUND: CD34(-) stem cells are apparently the earliest progenitors of hematopoiesis and mesenchymal tissues. The majority of those progeny rests in the BM as fibroblast-like cells, but can also circulate the peripheral blood. Nevertheless, CD34(-), fibroblast-like cells can be isolated from BM aspirates and PBMC, mediated by their ability to adhere to the plastic surface of tissue culture flasks. In standard colony assays, CD34(-), fibroblast-like cells produce a significant number of colony-forming-units (CFUs), mainly CFU-F (fibroblast). METHODS: Despite advanced cell-culture techniques and the application of various growth factors, the life span of those multipotent stem cells is limited. Therefore, we immortalized and cloned fibroblast-like, CD34(-) stem cells and used retroviral constructs containing the green-fluorescence protein (GFP) to determine the gene-transfer efficiency and their use for gene marking prior to transplantation into NOD/SCID mice. RESULTS: We could demonstrate a highly efficient retroviral gene transfer into those immortalized CD34(-), fibroblast-like hematopoietic cells (up to 95% transduced cells), maintaining their ability to produce CFUs, as well as a distinct organ distribution after transplantation into the recipient animals, functioning as SCID-repopulating cells (SRC). Transplanted cells could be detected in the BM, as well as other parenchymal organs, such as the lung, liver, skin, small intestine and brain. DISCUSSION: CD34(-), fibroblast-like progenitor cells can give rise to hematopoietic progeny, but also home to mesenchymal organ sites in recipient animals. There is increasing evidence that pluripotent CD34(-) stem cells can be isolated from various sources and still maintain their capabilities to generate progeny of different tissues. This could be a promising approach to using peripheral-blood derived stem cells for cellreplacement therapy and tissue engineering.[1]

References

 
WikiGenes - Universities