The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Multipotent Stem Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Multipotent Stem Cells


High impact information on Multipotent Stem Cells


Biological context of Multipotent Stem Cells


Anatomical context of Multipotent Stem Cells


Associations of Multipotent Stem Cells with chemical compounds

  • Phorbol esters activate protein kinase C and glucose transport and can replace the requirement for growth factor in interleukin-3-dependent multipotent stem cells [19].
  • This latter problem can be solved, in part, by using marrow from mice previously treated with 5-fluorouracil (5-FU): an agent that preferentially kills the more mature, actively cycling CFC but spares the proliferatively quiescent multipotent stem cells [20].
  • All three cell populations generated mixed colonies containing both luminal and myoepithelial cells from a single cell and therefore represent candidate multipotent stem cells [21].

Gene context of Multipotent Stem Cells


Analytical, diagnostic and therapeutic context of Multipotent Stem Cells


  1. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. Moser, A.R., Dove, W.F., Roth, K.A., Gordon, J.I. J. Cell Biol. (1992) [Pubmed]
  2. Lineage commitment in biphenotypic acute leukemia. Buccheri, V., Matutes, E., Dyer, M.J., Catovsky, D. Leukemia (1993) [Pubmed]
  3. Chromosome 1q+ in erythroid and granulocyte-monocyte precursors in a patient with essential thrombocythemia. Knuutila, S., Ruutu, T., Partanen, S., Vuopio, P. Cancer Genet. Cytogenet. (1983) [Pubmed]
  4. Stem cells in the treatment of Parkinson's disease. Arenas, E. Brain Res. Bull. (2002) [Pubmed]
  5. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Merrill, B.J., Gat, U., DasGupta, R., Fuchs, E. Genes Dev. (2001) [Pubmed]
  6. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M., Alvarez-Buylla, A. Neuron (2002) [Pubmed]
  7. Olig2+ neuroepithelial motoneuron progenitors are not multipotent stem cells in vivo. Mukouyama, Y.S., Deneen, B., Lukaszewicz, A., Novitch, B.G., Wichterle, H., Jessell, T.M., Anderson, D.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. Characterization of Dicer-deficient murine embryonic stem cells. Murchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S., Hannon, G.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  9. Efficient transplantation of BCR-ABL-induced chronic myelogenous leukemia-like syndrome in mice. Gishizky, M.L., Johnson-White, J., Witte, O.N. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  10. The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells. Miyagi, S., Saito, T., Mizutani, K., Masuyama, N., Gotoh, Y., Iwama, A., Nakauchi, H., Masui, S., Niwa, H., Nishimoto, M., Muramatsu, M., Okuda, A. Mol. Cell. Biol. (2004) [Pubmed]
  11. Granzyme B and perforin lytic proteins are expressed in CD34+ peripheral blood progenitor cells mobilized by chemotherapy and granulocyte colony-stimulating factor. Berthou, C., Marolleau, J.P., Lafaurie, C., Soulié, A., Dal Cortivo, L., Bourge, J.F., Benbunan, M., Sasportes, M. Blood (1995) [Pubmed]
  12. Selection of multipotent stem cells during morphogenesis of small intestinal crypts of Lieberkuhn is perturbed by stimulation of Lef-1/beta-catenin signaling. Wong, M.H., Huelsken, J., Birchmeier, W., Gordon, J.I. J. Biol. Chem. (2002) [Pubmed]
  13. Selection against blood cells deficient in hypoxanthine phosphoribosyltransferase (HPRT) in Lesch-Nyhan heterozygotes occurs at the level of multipotent stem cells. Hakoda, M., Hirai, Y., Akiyama, M., Yamanaka, H., Terai, C., Kamatani, N., Kashiwazaki, S. Hum. Genet. (1995) [Pubmed]
  14. Significance of cellular pharmacokinetics for the cytotoxic effects of daunorubicin. Andersson, B., Beran, M., Peterson, C., Tribukait, B. Cancer Res. (1982) [Pubmed]
  15. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A.C., Reynolds, B.A. J. Neurosci. (1996) [Pubmed]
  16. Hair cycle and wound healing in mice with a keratinocyte-restricted deletion of FAK. Essayem, S., Kovacic-Milivojevic, B., Baumbusch, C., McDonagh, S., Dolganov, G., Howerton, K., Larocque, N., Mauro, T., Ramirez, A., Ramos, D.M., Fisher, S.J., Jorcano, J.L., Beggs, H.E., Reichardt, L.F., Ilic, D. Oncogene (2006) [Pubmed]
  17. Activin promotes astrocytic differentiation of a multipotent neural stem cell line and an astrocyte progenitor cell line from murine central nervous system. Satoh, M., Sugino, H., Yoshida, T. Neurosci. Lett. (2000) [Pubmed]
  18. A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study. Kang, K.S., Kim, S.W., Oh, Y.H., Yu, J.W., Kim, K.Y., Park, H.K., Song, C.H., Han, H. Cytotherapy. (2005) [Pubmed]
  19. Phorbol esters activate protein kinase C and glucose transport and can replace the requirement for growth factor in interleukin-3-dependent multipotent stem cells. Whetton, A.D., Heyworth, C.M., Dexter, T.M. J. Cell. Sci. (1986) [Pubmed]
  20. The response of haemopoietic cells to growth factors: developmental implications of synergistic interactions. Heyworth, C.M., Ponting, I.L., Dexter, T.M. J. Cell. Sci. (1988) [Pubmed]
  21. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Clayton, H., Titley, I., Vivanco, M. Exp. Cell Res. (2004) [Pubmed]
  22. Transforming property of TEL-FGFR3 mediated through PI3-K in a T-cell lymphoma that subsequently progressed to AML. Maeda, T., Yagasaki, F., Ishikawa, M., Takahashi, N., Bessho, M. Blood (2005) [Pubmed]
  23. Abl protein kinase abrogates the response of multipotent haemopoietic cells to the growth inhibitor macrophage inflammatory protein-1 alpha. Wark, G., Heyworth, C.M., Spooncer, E., Czaplewski, L., Francis, J.M., Dexter, T.M., Whetton, A.D. Oncogene (1998) [Pubmed]
  24. Growth of murine multipotent stem cells in a simple "serum-free" culture system: role of interleukin-3, erythropoietin, and hemin. Monette, F.C., Sigounas, G. Exp. Hematol. (1988) [Pubmed]
  25. Interleukin 3 stimulates proliferation via protein kinase C activation without increasing inositol lipid turnover. Whetton, A.D., Monk, P.N., Consalvey, S.D., Huang, S.J., Dexter, T.M., Downes, C.P. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
WikiGenes - Universities