The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Secretory expression and purification of Aspergillus niger glucose oxidase in Saccharomyces cerevisiae mutant deficient in PMR1 gene.

The gene encoding glucose oxidase (GOD) from Aspergillus niger was expressed as a secretory product in the yeast Saccharomyces cerevisiae. Six consecutive histidine residues were fused to the C-terminus of GOD to facilitate purification. The recombinant GOD-His(6) secreted by S. cerevisiae migrated as a broad diffuse band on SDS-PAGE, with an apparent molecular weight higher than that in natural A. niger GOD. To investigate the effects of hyperglycosylation on the secretion efficiency and enzyme properties, GOD-His(6) was expressed and secreted in a S. cerevisiae mutant in which the PMR1 gene encoding Ca(++)-ATPase was disrupted. The pmr1 null mutant strain secreted an amount of GOD-His(6) per unit cell mass higher than that in the wild-type strain. In contrast to the hyperglycosylated GOD-His(6) secreted in the wild-type strain, the pmr1 mutant strain secreted GOD-His(6) in a homogeneous form with a protein band pattern similar to that in natural A. niger GOD, based on SDS-PAGE. The hyperglycosylated and pmr1Delta mutant-derived GOD-His(6) enzymes were purified to homogeneity by immobilized metal ion-affinity chromatography and their specific activities and stabilities were compared. The specific activity of the pmr1Delta mutant-derived GOD-His(6) on a protein basis was very similar to that of the hyperglycosylated GOD-His(6), although its pH and thermal stabilities were lower than those of the hyperglycosylated GOD-His(6).[1]


WikiGenes - Universities