The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Identification and functional characterization of a novel KCNE2 (MiRP1) mutation that alters HERG channel kinetics.

Long-QT syndrome (LQTS) may cause syncope and sudden death due to cardiac tachyarrhythmia. Chromosome 7-linked LQTS (LQT2) has been correlated with mutations in the human ether-a-go-go-related gene (HERG). HERG forms voltage-gated K channels that may be associated with Mink-related peptide 1 (MiRP1), an auxiliary beta-subunit. The channels mediate currents that resemble native I(Kr). Mutations in the KCNE2 gene encoding MiRP1 may also cause LQTS. In this study, the frequency of mutations in KCNE2 of 150 unrelated LQTS patients without known genotype and of 100 controls was analyzed using single-strand conformation polymorphism analysis and direct sequencing. We identified a novel missense mutation, V65 M, in the KCNE2 gene of a 17-year-old female with syncope and LQTS. Expression studies in Chinese hamster ovary cells revealed that mutant and wild-type MiRP1 co-localized with HERG subunits and formed functional channels. However, mutant HERG/MiRP1(V65M) channels mediated currents with an accelerated inactivation time course compared with wild-type channels. The accelerated inactivation time course of HERG/MiRP1(V65M) channels may decrease I(Kr) current density of myocardial cells, thereby impairing the ability of myocytes to repolarize in response to sudden membrane depolarizations such as extrasystoles.[1]


  1. Identification and functional characterization of a novel KCNE2 (MiRP1) mutation that alters HERG channel kinetics. Isbrandt, D., Friederich, P., Solth, A., Haverkamp, W., Ebneth, A., Borggrefe, M., Funke, H., Sauter, K., Breithardt, G., Pongs, O., Schulze-Bahr, E. J. Mol. Med. (2002) [Pubmed]
WikiGenes - Universities